首页> 外文会议>AIAA guidance, navigation, and control conference >Covariance Analysis of Astrometric Alignment Estimation Architectures for Precision Dual Spacecraft Formation Flying
【24h】

Covariance Analysis of Astrometric Alignment Estimation Architectures for Precision Dual Spacecraft Formation Flying

机译:精密双航天器编队飞行的天文对准估计架构的协方差分析

获取原文

摘要

Many proposed formation flying missions seek to advance the state of the art in spacecraft science imaging by utilizing precision dual spacecraft formation flying to enable a "virtual" telescope. Using precision dual spacecraft alignment, very long focal lengths can be achieved by locating the optics on one spacecraft and the detector on the other. Proposed science missions include astrophysics concepts with spacecraft separations from 1000 km to 25,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM) X-ray telescope and the New Worlds Observer exoplanet mission as well as, heliophysics concepts for solar coronagraphs and X-ray imaging with smaller separations (50m - 500m). All of these proposed missions require advances in precision formation flying of two spacecraft. In particular, very precise astrometric alignment control and estimation is required for accurate inertial pointing of the virtual telescope, which is required to perform the orders of magnitude improvement in the science imaging. The work presented in this paper focuses on analysis of proposed navigation systems and architectures for achieving precise dual spacecraft astrometric alignment. First, the dynamics of dual spacecraft relative motion, within a restricted n-body problem framework, are shown to reduce to a simple linear form and are used in estimation filter design and error analysis for deep space mission applications, such as MASSIM. This model is augmented with simplified measurement process models of relevant measurement types. These include inertial sensors, such as accelerometers and rate gyros, as well as optical alignment sensors, such as star and laser beacon trackers. A consider-state covariance analysis tool is developed from these process models and used to study the performance of proposed estimation architectures for the MASSIM application, specifically focusing on the transverse alignment between the two spacecraft with the goal of achieving mm-scale transverse alignment accuracy.
机译:许多提议的编队飞行任务试图通过利用精密的双重航天器编队飞行来实现“虚拟”望远镜,来推进航天器科学成像领域的最新技术。使用精确的双重航天器对准,可以通过将光学元件放在一个航天器上,而将探测器放置在另一个航天器上,来实现很长的焦距。拟议的科学任务包括航天器距离在1000 km至25,000 km之间的天体物理学概念,例如Milli-Arc-Second Structure Imager(MASSIM)X射线望远镜和“新世界观察者”系外行星任务,以及太阳日冕仪和太阳日冕仪的太阳物理学概念。 X射线成像间隔较小(50m-500m)。所有这些拟议的任务都要求在两架航天器的精确编队飞行方面取得进展。特别是,对于虚拟望远镜的精确惯性指向,需要非常精确的天文对准控制和估计,这对于执行科学成像中的数量级改进是必需的。本文提出的工作重点是为实现精确的双航天器天文对准而对提议的导航系统和体系结构进行分析。首先,在有限的n体问题框架内,双航天器相对运动的动力学显示为简化为线性形式,并用于深空飞行任务应用(例如MASSIM)的估计滤波器设计和误差分析。该模型增加了相关测量类型的简化测量过程模型。这些包括惯性传感器,例如加速计和速率陀螺仪,以及光学对准传感器,例如星形和激光信标跟踪器。从这些过程模型开发了一种考虑状态协方差分析工具,该工具用于研究针对MASSIM应用的拟议估算架构的性能,特别关注于两个航天器之间的横向对准,目的是实现毫米级的横向对准精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号