首页> 外文会议>Corrosion conference and expo >Optimization Of Retrofit Cathodic Protection (CP) Systems Using Computational Modeling By Evaluating Performance Of Remnant And Retrofit CP Systems, Taking Into Account Long-Term Polarization Effects
【24h】

Optimization Of Retrofit Cathodic Protection (CP) Systems Using Computational Modeling By Evaluating Performance Of Remnant And Retrofit CP Systems, Taking Into Account Long-Term Polarization Effects

机译:通过评估残余和改造CP系统的性能,考虑了长期极化效应,优化使用计算建模的改造阴极保护(CP)系统

获取原文

摘要

Sacrificial anode retrofitting to aging structures is routinely performed for life extension of offshore assets in matured fields. Sometimes earlier retrofit systems are now being replaced or supplemented. Understanding when remnant CP systems can no longer prevent depolarization is important as timely intervention can reduce overall retrofit cost, which is a significant factor. Life must be extended a required number of years, and design should take into account performance of remaining anodes and state of calcareous deposits. Data for this is generally available from past surveys. During design, computational modeling can be used firstly to gain quantitative understanding of the state of the structure, remaining life of existing anodes and estimated date at which serious loss of calcareous deposits will occur. Secondly, modeling can determine the short term effect of a new CP system on structural potentials. This information can be used to modify the numbers, positions and mass of new anodes. This optimizes distribution of potential and anode mass loss rates. Moreover, benefits of fewer large versus several smaller anodes can be weighed-up. Finally, modeling can determine the long-term effects of new, old, and combined CP systems, eg to identify when individual anodes reach their utilization factor and consequent effect on remainder of structure. The aim of this paper is to present a case where modeling has been applied to a jacket structure, using "long-term" polarization curves to represent accumulation of calcareous deposits. Hence, the key benefits achieved are: retrofit requirement reduction, significant cost savings, better CP current distribution despite reduction in number of anodes, maximized life. Other future benefits are possibility to predict future CP survey frequency and improved planning of retrofits requirements; hence saving further cost on needless future surveys.
机译:牺牲阳极改装对老化结构进行了常规进行成熟领域的海上资产的生命延伸。有时,现在正在更换或补充更早的改造系统。理解当残余CP系统不能再妨碍去极化时,作为及时干预可以降低整体改造成本,这是一个重要因素。生命必须延长必要的历史数,并且设计应考虑到剩余阳极和钙质存款状态的性能。这一点的数据通常可以从过去的调查中获得。在设计期间,可以首先使用计算建模,以获得对结构状态的定量理解,现有阳极的剩余寿命和估计的钙质沉积物的估计日期。其次,建模可以确定新CP系统对结构势的短期效果。此信息可用于修改新阳极的数字,位置和质量。这优化了电位和阳极质量损失率的分布。此外,可以称重较少的大量与几个较小的阳极的益处。最后,建模可以确定新,旧和组合CP系统的长期效果,例如何时识别单个阳极何时达到其利用因素,并随后对结构剩余的影响。本文的目的是介绍使用“长期”偏振曲线将建模应用于夹套结构的情况,以表示钙质沉积物的累积。因此,实现的主要效益是:改造需求降低,显着成本节省,尽管阳极数量减少,但最大化的生命。其他未来的益处是预测未来的CP调查频率和改善的改造规划要求;因此,对不必要的未来调查保存进一步的成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号