首页> 外文会议>IEEE Sensors >Structural Health Monitoring using Apodized Pi-Phase Shifted FBG: Decoupling Strain and Temperature Effects
【24h】

Structural Health Monitoring using Apodized Pi-Phase Shifted FBG: Decoupling Strain and Temperature Effects

机译:结构健康监测采用停滞PI相移位FBG:去耦应变和温度效应

获取原文

摘要

Fiber Bragg Gratings (FBGs) as tools for structural health monitoring are broadly used for assessing the composite structures behavior under different scenarios to secure the system in a reliable and accurate way. Due to cross-sensitivity effects in optical sensors, one way to enhance the accuracy is to disentangle the strain from other affecting parameters such as temperature or vibration for recognizing the real strain that is experienced by the composite structure. In this work, design and numerical simulations of Apodized Pi-Phase Shifted FBG (π-PSFBG) are presented to evaluate the performance of non-uniform FBG for simultaneous strain and temperature monitoring. Due to specific accuracy and spectral characteristics of the π-PSFBG, it is selected as an optical sensor to enhance the sensitivity of the measurements. Sensor signals are designed and simulated by solving coupled mode equations using the transfer matrix to represent the reflection spectrum of π-PSFBG. To accomplish spectral improvement, the Gaussian apodization function is applied to the FBG reflected spectrum in order to optimize its spectra by suppressing side lobes. Moreover, we have developed π-PSFBG sensor using Neural Networks (NNs) approach to sense and discriminate strain from other affecting gauges such as temperature. The proposed neural networks is trained to learn the relationship between the reflection spectrum and the external parameters such as strain and temperature. Our investigations not only characterize the performance of an apodized π-PSFBG to simultaneously measure two parameters with high sensitivity, but also yield the minimum error in compensation of strain from temperature.
机译:纤维布拉格光栅(FBG)作为结构健康监测的工具广泛用于评估不同场景下的复合结构行为,以可靠和准确的方式保护系统。由于光学传感器中的交叉敏感性效应,提高精度的一种方法是解开来自其他影响参数的菌株,例如温度或振动,以识别复合结构所经历的真正应变。在这项工作中,提出了一种减少的PI相移位FBG(π-PSFBG)的设计和数值模拟,以评估非均匀FBG进行同时应变和温度监测的性能。由于π-PSFBG的比精度和光谱特性,选择为光学传感器,以增强测量的灵敏度。通过使用传输矩阵求解耦合模式方程来表示传感器信号,以表示π-PSFBG的反射谱。为了实现光谱改进,通过抑制侧瓣,将高斯偏移函数施加到FBG反射频谱上,以优化其光谱。此外,我们开发了使用神经网络(NNS)方法的π-PSFBG传感器来感测和区分菌株,例如温度等其他影响仪表。培训所提出的神经网络以学习反射谱和外部参数之间的关系,例如应变和温度。我们的调查不仅表征了减少的π-PSFBG的性能,可以同时测量具有高灵敏度的两个参数,而且还产生从温度补偿的最小误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号