首页> 外文会议>ASME international mechanical engineering congress and exposition;IMECE2011 >THE EFFECTS OF OPERATING CONDITIONS ON THE DESIGN OF RADIAL SPIRAL MANDREL DIES
【24h】

THE EFFECTS OF OPERATING CONDITIONS ON THE DESIGN OF RADIAL SPIRAL MANDREL DIES

机译:工作条件对径向螺旋模设计的影响

获取原文

摘要

Coextrusion heads are widely used to produce multi-layered products such as pipes and vessels in plastics industry. Spiral mandrel dies which are used in coextrusion heads provide good thickness uniformity with a broad range of processing parameters (raw material, throughput, temperature), short residence times (material or colour changes), low pressure drop and good thermal control. In the present study, the effects of operating conditions such as production rate and temperature on the pressure drop through the spiral mandrel die and the occurence of melt fracture are investigated by Computational Fluid Dynamics (CFD) simulations. The temperature dependent viscosity versus shear rate data for grade QB79P (CarmelTech) polypropylene (PP) melt under study are measured by use of an Anton-Paar Physica MCR 301 model rotational rheometer with a 25 mm diameter parallel plate geometry and a capillary rheometer using capillary dies of various lengths with 1 mm diameter hole [11]. The numerical simulations are performed by use of Ansys Fluent, a commercial software [12]. Stress terms in the momentum equations are modeled by Generalized Newtonian Fluid (GNF) Model. For this, Bird-Carreau Model employed as the viscosity model for the polymer melt. In order to avoid exceeding the critical shear stress which causes melt fracture and the value of which is dependent on the processing material, the operating temperature may need to be increased to reduce the viscosity or the flow rate to be decreased. In this case, operating cost increases as a result of energy consumption for heating and the production rate decreases, respectively. Hence, designing of flow channels of the spiral mandrel die by taking into consideration of material property (melt fracture) and extruder limitation (maximum pressure to be supplied) is of critical importance for extrusion with desired production rate at a specific processing temperature.
机译:共挤头广泛用于生产多层产品,例如塑料工业中的管道和容器。用于共挤头的螺旋芯模可提供良好的厚度均匀性,并具有广泛的加工参数(原料,产量,温度),停留时间短(材料或颜色变化),低压降和良好的热控制性能。在本研究中,通过计算流体动力学(CFD)模拟研究了诸如生产速率和温度等操作条件对通过螺旋心轴模头的压降以及熔体破裂的发生的影响。 QB79P(CarmelTech)聚丙烯(PP)熔体的温度依赖性粘度与剪切速率数据是通过使用Anton-Paar Physica MCR 301模型旋转流变仪(直径为25 mm平行板几何形状)和使用毛细管的毛细管流变仪进行测量的具有直径1毫米的孔[11]的各种长度的模具。数值模拟是使用商业软件Ansys Fluent进行的[12]。动量方程中的应力项由广义牛顿流体(GNF)模型建模。为此,采用Bird-Carreau模型作为聚合物熔体的粘度模型。为了避免超过导致熔体破裂且其值取决于加工材料的临界剪切应力,可能需要提高操作温度以降低粘度或降低流速。在这种情况下,由于用于加热的能量消耗而导致运营成本增加,并且生产率降低。因此,考虑到材料特性(熔体破裂)和挤出机的局限性(要提供的最大压力)来设计螺旋心轴模具的流道,对于在特定加工温度下以所需的生产率进行挤出至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号