首页> 外文会议>Internationales Wiener motorensymposium >Future Mobility Case Studies - Life Cycle Assessments of BEVs and ICVs with a Global Perspective
【24h】

Future Mobility Case Studies - Life Cycle Assessments of BEVs and ICVs with a Global Perspective

机译:未来出行案例研究-具有全球视野的BEV和ICV的生命周期评估

获取原文

摘要

By 2050 the increase in mobility demand will lead to worldwide car ownership potentially triplingto around two billion vehicles. Increased demand for mobility means increased demand forenergy. To deliver this, whilst at the same time as reducing CO2 emissions and improving airquality, will require integrated smarter mobility solutions that embrace a range of smarter vehiclesand fuels, together with smarter infrastructure. In combination these help promote smarterusage. In this context Shell believes that a mosaic of mobility options will be required for roadtransport, and is actively evaluating future energy supply for future drivetrains, as part of thisintegrated solution.Apart from the further development of today’s gasoline and diesel engines powered by crude oilbasedfuels and first generation and advanced bio fuels, Shell also evaluates options from gas, in itsdifferent forms as compressed natural gas (CNG), liquefied natural gas (LNG) or gas-to-liquids(GTL), from hydrogen, and also from the energy required for electric vehicle mobility.Emissions from transport are a key factor to evaluate the best form of future energy/drivetrainoptions. The increasing challenges of global population growth, urbanisation, congestion and smogrelated emissions from traffic are also important drivers, especially for certain regions.On the other hand the road transport sector accounts for a significant portion of global energy useand energy-related greenhouse gas (GHG) emissions, and has been identified by governmentsaround the world as one of the main areas to address the challenges of sustainable mobility, energysecurity and climate change. With regards to GHG emissions in particular, policy makers in manyjurisdictions are considering and implementing measures to reduce the average GHG intensity oftransport fuels, such as policies and regulations that mandate increasing use of lower carbonintensity fuels e.g. bio fuels, or stimulate the introduction of alternative technologies e.g. electric orhybrid vehicles. In order to be effective, these measures should be based on sound scientificanalyses of the ‘life cycle’ GHG emissions of the relevant fuel/powertrain combinations (the‘mobility pathways’).To analyse the life cycle energy use and GHG emissions for a specific pathway, the researcher willnecessarily have to make methodological choices which will strongly influence the outcome of theanalysis. A universal, ‘one-size-fits-all’ methodology for conducting life cycle analysis is notfeasible – it is often necessary to allow a certain degree of flexibility in defining the boundaries ofthe system under study, and to make numerous practical assumptions. This potential ambiguityhighlights the importance of transparency in GHG emissions accounting, as well as the inherentcomplexity of life cycle assessment. Therefore, it is very important that findings from such studiesare communicated in the right context.To highlight the potential risks associated with simplification, we present a relevant case study onelectric vehicles, where the outcome of the analysis changes substantially with themethodological/system boundary choices made. Electric vehicles have increasingly gainedworldwide interest as one of the most promising potential long-term solutions to sustainablepersonal mobility; in particular, battery electric vehicles (BEVs) offer zero tailpipe emissionsenabling them not only to reduce transport GHG emissions but also to reduce other regulatedemissions (e.g. smog). However, their true ability to contribute to GHG emissions reductions canonly be properly assessed by comparing a full life cycle assessment of their GHG emissions with asimilar assessment for conventional internal combustion vehicles (ICVs). In this study, we havecarried out an analysis for vehicles typical of those expected to be introduced in 2012 in WesternEurope, the U.S. and China, taking into account the impact of three important factors: a) like-forlikevehicle comparison and effect of real-world driving conditions, b) accounting for the GHGemissions associated with meeting the additional electricity demand for charging the batteries, and c)the GHG emissions associated with the vehicle life cycle (e.g. manufacture and disposal, etc).We find that BEVs can deliver significant GHG savings compared to ICVs providing that the gridGHG intensity used to charge the batteries is sufficiently low. In particular, BEVs perform bestrelative to ICVs in terms of GHG emissions in low speed (e.g. urban) driving and when lightlyloaded with weight and auxiliaries. However, vehicle life cycle emissions are higher for BEVs thanICVs due to the GHG emissions associated with battery manufacture.Furthermore, our analysis illustrates that it is inappropriate to draw general conclusions about therelative GHG performance of BEVs and ICVs without due reference to the context – such relativeperformance depends on a wide range of factors, including regional grid GHG intensity, vehiclesize, driving pattern, loading etc., and any meaningful comparison for policy setting purposesshould take these fully into account for the specific situation being considered.
机译:到2050年,出行需求的增长将导致全球汽车拥有量可能增加三倍 约20亿辆。对流动性的需求增加意味着对流动性的需求增加 活力。在实现这一目标的同时,还减少了二氧化碳的排放并改善了空气质量 品质,将需要集成的智慧型出行解决方案,以涵盖一系列智慧型车辆 和燃料,以及更智能的基础设施。结合使用这些有助于提升智慧 用法。在这种情况下,壳牌认为,道路交通将需要多种选择 运输,并正在积极评估未来动力传动系统的未来能源供应,这是其中的一部分 集成解决方案。 除了当今以原油为基础的汽油和柴油发动机的进一步发展 燃料以及第一代和高级生物燃料,壳牌还评估了天然气的选择 压缩天然气(CNG),液化天然气(LNG)或气液形式不同 (GTL),氢以及电动汽车出行所需的能量。 运输排放是评估未来能源/动力传动系统最佳形式的关键因素 选项。全球人口增长,城市化,交通拥挤和烟雾不断增加的挑战 与交通相关的排放也是重要的驱动力,尤其是对于某些地区。 另一方面,公路运输部门在全球能源使用中占很大一部分 和与能源有关的温室气体(GHG)排放,并已被政府确认 成为解决可持续交通,能源挑战的主要领域之一 安全与气候变化。特别是在温室气体排放方面,许多国家的政策制定者 司法管辖区正在考虑并采取措施以降低城市的平均温室气体排放强度。 运输燃料,例如要求增加使用低碳的政策和法规 强度燃料生物燃料,或刺激替代技术的引进,例如电动或 混合动力汽车。为了有效,这些措施应基于合理的科学依据 相关燃料/动力总成组合的“生命周期” GHG排放分析( “交通途径”。为了分析特定途径的生命周期能耗和温室气体排放量,研究人员将 必然要做出方法上的选择,这将极大地影响研究的结果。 分析。进行生命周期分析的通用,“千篇一律”的方法并不是 可行的–通常有必要在定义边界时给予一定程度的灵活性 所研究的系统,并做出许多实际的假设。这种潜在的歧义 强调透明度在温室气体排放核算中的重要性以及固有的 生命周期评估的复杂性。因此,这些研究的发现非常重要 在正确的环境中进行沟通。 为了突出与简化相关的潜在风险,我们提出了一个相关的案例研究 电动汽车,分析结果会随着 方法/系统边界的选择。电动汽车越来越多 全球利益是可持续发展的最有希望的潜在长期解决方案之一 个人流动性;特别是,电动汽车(BEV)的尾气排放为零 使他们不仅可以减少运输中的温室气体排放,还可以减少其他受管制的 排放物(例如烟雾)。但是,他们为减少温室气体排放做出贡献的真正能力可以 只能通过将其温室气体排放的完整生命周期评估与 常规内燃机车辆(ICV)的类似评估。在这项研究中,我们有 对预计将于2012年在Western引入的典型车辆进行了分析 欧洲,美国和中国,并考虑到三个重要因素的影响: 车辆比较和实际驾驶条件的影响,b)温室气体核算 与满足为电池充电的额外电力需求相关的排放;以及c) 与车辆生命周期相关的温室气体排放(例如制造和处置等)。 我们发现,与提供电网并网的ICV相比,BEV可以节省大量的温室气体。 用于给电池充电的GHG强度足够低。特别是,BEV表现最佳 在低速(例如城市)驾驶和轻载时的温室气体排放方面相对于ICV 满载着重量和助剂。但是,BEV的车辆生命周期排放比 由于与电池制造相关的温室气体排放而产生的ICV。 此外,我们的分析表明,不宜就此做出一般性结论 BEV和ICV的相对温室气体排放性能,但未适当参考背景情况-此类相对排放 性能取决于多种因素,包括区域电网温室气体强度,车辆 大小,行驶方式,负载等,以及出于策略设置目的进行的任何有意义的比较 对于所考虑的具体情况,应充分考虑这些因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号