首页> 外文会议>ASME turbo expo >INFLUENCES OF INLET SWIRL DISTRIBUTIONS ON AN INTER-TURBINE DUCT PART Ⅰ: CASING SWIRL VARIATION
【24h】

INFLUENCES OF INLET SWIRL DISTRIBUTIONS ON AN INTER-TURBINE DUCT PART Ⅰ: CASING SWIRL VARIATION

机译:进风涡流分布对涡轮间风道的影响Ⅰ:套管涡流变化

获取原文

摘要

The inter-turbine transition duct (ITD) of a gas turbine engine has significant potential for engine weight reduction and/or aerodynamic performance improvement. This potential arises because very little is understood of the flow behavior in the duct in relation to the hub and casing shapes and the flow entering the duct (e.g., swirl angle, turbulence intensity, periodic unsteadiness and blade tip vortices from upstream HP turbine blade rows). In this study, the flow development in an ITD with different inlet swirl distributions was investigated experimentally and numerically. The current paper, which is the first part of a two-part paper, presents the investigations of the influences of the casing swirl variations on the flow physics in the ITD. The results show a fair agreement between the predicted and experimental data. The radial pressure gradient at the first bend of ITD drives the low momentum hub boundary layer and wake flow radially, which results in a pair of hub counter-rotating vortices. Furthermore, the radially moving low momentum wake flow feeds into the casing region and causes 3D casing boundary layer. At the second bend, the reversed radial pressure gradient together with the 3D casing boundary layer generates a pair of casing counter-rotating vortices. Due to the local adverse pressure gradient, 3D boundary layer separation occurs on both the casing and hub at the second bend and the exit of the ITD, respectively. The casing 3D separation enhances the 3D features of the casing boundary layer as well as the existing casing counter-rotating vortices. With increasing casing swirl angle, the casing 3D boundary layer separation is delayed and the casing counter-rotating vortices are weakened. On the other hand, although the hub swirls are kept constant, the hub counter-rotating vortices get stronger with the increasing inlet swirl gradient. The total pressure coefficients within the ITD are significantly redistributed by the casing and hub counter-rotating vortices.
机译:燃气涡轮发动机的涡轮间过渡管道(ITD)具有减轻发动机重量和/或改善空气动力性能的巨大潜力。之所以会出现这种潜力,是因为人们对管道中与轮毂和壳体形状以及进入管道的流量有关的流动行为了解得很少(例如,涡流角,湍流强度,周期性不稳定以及来自上游HP涡轮叶片排的叶片尖端涡流) )。在这项研究中,对具有不同进口旋流分布的ITD中的流动发展进行了实验和数值研究。本文是两部分的第一部分,介绍了套管旋流变化对ITD中流动物理的影响的研究。结果表明,预测数据与实验数据之间存在合理的一致性。 ITD的第一个弯曲处的径向压力梯度驱动低动量轮毂边界层和径向尾流,从而导致一对轮毂反向旋转涡流。此外,径向移动的低动量尾流流入到套管区域,并导致3D套管边界层。在第二个弯曲处,反向的径向压力梯度与3D套管边界层一起会产生一对套管反向旋转涡流。由于局部不利的压力梯度,在ITD的第二个弯曲处和出口处,套管和轮毂上分别发生了3D边界层分离。套管3D分离增强了套管边界层的3D特征以及现有的套管反向旋转涡流。随着套管旋流角的增加,套管3D边界层分离被延迟并且套管反向旋转涡流被减弱。另一方面,尽管轮毂涡流保持恒定,但随着入口涡流梯度的增加,轮毂反向旋转涡流变得更强。 ITD内的总压力系数通过机壳和轮毂的反向旋转涡旋显着地重新分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号