首页> 外文会议>Conference on optical microlithography XXV >Reconstruction of dynamical perturbations in optical systemsby opto-mechanical simulation methods
【24h】

Reconstruction of dynamical perturbations in optical systemsby opto-mechanical simulation methods

机译:重建光学系统中的动态扰动通过光机械仿真方法

获取原文
获取外文期刊封面目录资料

摘要

High-performance objectives pose very strict limitations on errors present in the system. External mechanical influencescan induce structural vibrations in such a system, leading to small deviations of the position and tilt of the opticalcomponents inside the objective from the undisturbed system. This can have an impact on the imaging performance,causing blurred images or broadened structures in lithography processes. A concept to detect the motion of thecomponents of an optical system is presented and demonstrated on a simulated system. The method is based on acombination of optical simulation together with mechanical simulation and inverse problem theory. On the optical sideraytracing is used for the generation of wavefront data of the system in its current state. A Shack-Hartmann sensor isimplemented as a model to gather this data. The sensor can capture wavefront data with high repetition rates to resolvethe periodic motion of the vibrating parts. The mechanical side of the system is simulated using multibody dynamics.The system is modeled as a set of rigid bodies (lenses, mounts, barrel), represented by rigid masses connected by springsthat represent the coupling between the individual parts. External excitations cause the objective to vibrate. The vibrationcan be characterized by the eigenmodes and eigenfrequencies of the system. Every state of the movement during thevibration can be expressed as a linear combination of the eigenmodes. The reconstruction of the system geometry fromthe wavefront data is an inverse problem. Therefore, Tikhonov regularization is used in the process in order to achievemore accurate reconstruction results. This method relies on a certain amount of a-priori information on the system. Themechanical properties of the system are a great source of such information. It is taken into account by performing thecalculation in the coordinate system spanned by the eigenmodes of the objective and using information on the spectrumof frequencies present in the current vibration as a-priori data. The position of the individual lenses as a function of timeis then calculated from several frames of the wavefront data and extrapolated to future timesteps. Information on thesystem gathered with this method can be useful for applying and controlling countermeasures against the vibrationsduring use of the objective or for designing new systems that are less influenced by vibrations.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
机译:高性能目标对系统中存在的错误提出了非常严格的限制。外部机械影响会在这样的系统中引起结构振动,从而导致物镜内部光学组件的位置和倾斜与原状系统的偏差很小。这可能会对成像性能产生影响,导致光刻过程中图像模糊或结构变宽。在模拟系统上提出并演示了一种检测光学系统组件运动的概念。该方法基于光学仿真,机械仿真和反问题理论的结合。在光学方面,光线追踪用于在其当前状态下生成系统的波前数据。将Shack-Hartmann传感器实现为模型来收集此数据。该传感器可以高重复率捕获波前数据,以解决振动部件的周期性运动。系统的机械方面是使用多体动力学进行模拟的。系统被建模为一组刚体(透镜,底座,镜筒),其由通过弹簧连接的刚性质量表示,这些质量代表各个零件之间的耦合。外部激励导致物镜振动。振动可以通过系统的本征模式和本征频率来表征。振动期间运动的每个状态都可以表示为特征模式的线性组合。从波前数据重建系统几何形状是一个反问题。因此,在该过程中使用Tikhonov正则化以获得更准确的重建结果。此方法依赖于系统上一定数量的先验信息。系统的机械特性是此类信息的重要来源。通过在由物镜的本征模跨越的坐标系中进行计算,并使用当前振动中存在的频谱信息作为先验数据,可以将其考虑在内。然后根据波前数据的几帧来计算各个透镜的位置随时间的变化,并外推至未来的时间步长。使用此方法收集的系统信息可用于在物镜使用过程中应用和控制针对振动的对策,或用于设计受振动影响较小的新系统。©(2012)COPYRIGHT光电仪器工程师协会(SPIE)。摘要的下载仅允许个人使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号