首页> 外文会议>NSTI nanotechnology conference and expo;Nanotech conference expo;NSTI-Nanotech 2012;TechConnect world annual conference expo >Quantum Chemical Molecular Dynamics Study of Oxidation Process on Fe-Cr Alloy Surfaces in High Temperature Water
【24h】

Quantum Chemical Molecular Dynamics Study of Oxidation Process on Fe-Cr Alloy Surfaces in High Temperature Water

机译:Fe-Cr合金表面高温水中氧化过程的量子化学分子动力学研究

获取原文

摘要

Stress corrosion cracking has become the critical issue that dominates the lifetime of various metallic materials such as stainless steels used under harsh operating conditions. In the EAC process, chemical reaction of the metal surface at crack tip such as oxidation and/or anodic dissolution, and subsequent formation of an oxide film plays an important role for crack propagation. In this study, tight-binding quantum chemical molecular dynamics simulations were employed to understand the chemical reactions caused by water molecules on Fe-Cr alloy surfaces in nano-scale. The main targeted temperature was boiling water nuclear reactor (BWR) condition which is 561 K. Water molecules were dissociated on the Fe-Cr surfaces at 561 K. The chromium atoms at the top layer segregated from the surface to bond with the dissociated oxygen atoms. Oxygen concentration around the chromium atoms gradually increased to preferentially form Cr-0 bonds during the simulation, which resulted in clustering of oxygen and chromium atoms on the surface. The clustering of oxygen and chromium is thought to bring about Cr-based oxide nucleation and therefore, the preferential formation of Cr-0 bonds is considered to be the initial process of the formation of oxide films on the Fe-Cr surface.
机译:应力腐蚀开裂已成为决定各种金属材料(例如在苛刻的操作条件下使用的不锈钢)的寿命的主要问题。在EAC工艺中,裂纹尖端的金属表面的化学反应,例如氧化和/或阳极溶解,以及随后形成的氧化膜,对裂纹的扩展起着重要的作用。在这项研究中,采用紧密结合的量子化学分子动力学模拟来了解纳米级Fe-Cr合金表面上水分子引起的化学反应。主要目标温度是561 K的沸水核反应堆(BWR)条件。水分子在561 K时在Fe-Cr表面解离。顶层的铬原子从表面偏析并与解离的氧原子键合。在模拟过程中,铬原子周围的氧浓度逐渐增加,优先形成Cr-0键,这导致表面上的氧和铬原子聚集。氧和铬的团簇被认为引起Cr基氧化物成核,因此,Cr-0键的优先形成被认为是在Fe-Cr表面上形成氧化膜的初始过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号