【24h】

Tunable self-focusing and self-steering of nematicons

机译:线虫的可调自我聚焦和自我控制

获取原文
获取外文期刊封面目录资料

摘要

Nematicons, i.e., optical spatial solitons in nematic liquid crystals (NLC), have been attracting a great deal of attention due to their unique properties such as, for example, excitability at powers of a few hundred µW and the possibility to be electrically and/or optically (by other light beams) bent.[1] In this work we investigate, both experimentally and theoretically, the nematicon behavior for different degrees of nonlinearity, discussing how the latter affects the beam width (self-focusing) and trajectory (self-steering). Having defined the angle between the molecular director n̂ (i.e., the local optic axis) and the beam wavevector k = n0k0 ẑ (k0 is the vacuum wavenumber, n0 the linear refractive index), the propagation of the extraordinary wave in the plane yz in a homogeneous NLC cell of thickness L across x is ruled by the equivalent 2D model [2,3] equation equation where Φ is the beam magnetic field and ψ is the all-optical perturbation on θ, with θ0 being the unperturbed θ, i.e., θ0 = Φ (F = 0). In Eqs. (1–2), Dy is the diffraction coefficient along y, δ(b) the walk-off of the soliton, γ = [ε0/(4K)](n2 − n2)[Z0/(n0 cosδ)]2, and Δne2 is the nonlinear change in the extraordinary refractive index ne. Eq. (2) is a reorientational equation which allows to compute the dielectric properties of the medium (δ and ne) once it is known the torque exerted by light on the NLC molecules, whereas (1) determines the beam profile once the n̂-distribution is known. It is clear from Eq. (2) that the nonlinear response, determined by the optical torque, depends on the initial angle θ--;0: hence, by changing θ0 it is possible to easily modify the nonlinear response of the sample, the latter feasible via an applied bias in a planar cell with interdigitated comb-like electrodes. [3] In the limit ψ θ ≪0, using Eqs. (1–2) it is possible to define two scalar parameters to investigate self-focusing (ruled by Δne2) and self-steering (determined by δ) versus θ0: a nonlocal Kerr coefficient n2, given by n20) = 2γsin[2(θ0−δ)]ne20) tanδ, and equation, proportional to the sensitivity of δ to the light intensity (Fig. 1), respectively. Numerical simulations of Eqs. (1–2) via BPM confirm the soliton behavior versus θ0 (Fig. 1). Figure 1 also shows the corresponding experimental results, with an excellent agreement with the theoretical predictions.
机译:向列,即向列液晶中的光学空间孤子,由于其独特的特性(例如,几百微瓦的功率下的激发性以及电和/或电的可能性)而受到了广泛的关注。或光学弯曲(通过其他光束)。[1]在这项工作中,我们在实验和理论上研究了不同程度非线性的线虫行为,并讨论了后者如何影响光束宽度(自聚焦)和轨迹(自转向)。定义了分子指向矢n̂(即局部光轴)与束波矢量k = n 0 k 0 ẑ(k 0 是真空波数,n 0 是线性折射率),在等效层2的厚度为L的NLC单元中,y波在平面yz上的传播是由等效2D模型控制的[ [2,3]方程方程,其中Φ是束流磁场,ψ是对θ的全光学扰动,其中θ 0 是不受扰动的θ,即θ 0 =Φ(F = 0)。在等式中(1-2),D y 是沿y的衍射系数,δ(b)孤子的走离,γ= [ε 0 < / inf> /(4K)](n 2 -n 2 )[Z 0 /((n 0 cosδ)] 2 ,而Δn e 2 是非线性变化在非寻常折射率n e 中。等式(2)是一个回归方程,一旦知道光在NLC分子上施加的扭矩,就可以计算介质的介电特性(δ和n e ),而(1)确定一旦知道n̂分布,就可以得到光束轮廓。从等式可以清楚地看出。 (2)由光转矩确定的非线性响应取决于初始角度θ- -- ; 0 :因此,通过更改θ 0 ,可以轻松修改样品的非线性响应,后者可以通过在具有叉指梳状的平面单元中施加偏压来实现状电极。 [3]在极限ψθ≪ 0 中,使用等式。 (1-2)可以定义两个标量参数来研究自聚焦(由Δn e 2 决定)和自转向(由δ确定)与θ的关系。 0 :非局部Kerr系数n 2 ,由n 2 (θ 0 )=2γsin[2( θ 0 -δ)] n e 2 (θ 0 )tanδ和方程,与灵敏度成正比δ分别对应于光强度(图1)。方程的数值模拟。 (1–2)通过BPM确认了孤子行为与θ 0 的关系(图1)。图1还显示了相应的实验结果,与理论预测非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号