首页> 外文会议>2011 IEEE Photonics Conference >Development of high transmittance, back-illuminated, silicon-on-sapphire substrates for high quantum efficiency and high resolution avalanche photodiode imaging arrays
【24h】

Development of high transmittance, back-illuminated, silicon-on-sapphire substrates for high quantum efficiency and high resolution avalanche photodiode imaging arrays

机译:开发高透射率,背照式蓝宝石上的硅衬底,以实现高量子效率和高分辨率雪崩光电二极管成像阵列

获取原文

摘要

There is a growing need in medical, scientific and industrial applications for dual-mode, passive and active 2D and 3D LADAR imaging methods. To fill this need, solid state, single-photon sensitive silicon avalanche photodiode (APD) detector arrays offer high sensitivity and the possibility to operate with wide dynamic range in dual linear and Geiger-mode for passive and active imaging. Although silicon avalanche photodiodes offer a promising solution, large scale, high quantum efficiency and high resolution arrays have not been developed yet, primarily due to the increased fabrication complexity of such detector devices and arrays compared to the more common, non-avalanching detectors such as CCDs and CMOS-APS devices. One major fabrication challenge for avalanche type detectors is the requirement of providing effective direct and indirect optical crosstalk isolation between detectors in an array since the avalanche gain process produces photons that could create false detection events in pixels nearby and at a distance thereby increasing the noise. While it is common for CCD arrays to have a pixel pitch between 12–30 µm and for CMOS-APS devices to have pixel pitch below 10 µm, it is more challenging to architect arrays of avalanche photodiodes for example, having such a small pitch due to optical crosstalk. The second major fabrication challenge for linear mode avalanche type detectors, especially critical in arrays is the detector gain uniformity. Detector gain uniformity is a critical performance parameter since an increase in gain excess noise will make the detector arrays unsuitable for precision metrology applications. As solid-state avalanche detectors are made smaller, it becomes more difficult to control the gain excess noise due to smaller area multiplication regions where the effects from slight variations in doping profiles and electric fields produce greater gain variability compared to larger area detectors.
机译:用于双模,被动和有源2D和3D LADAL成像方法的医疗,科学和工业应用中越来越需要。为了填补这种需求,固态,单光子敏感硅雪崩光电二极管(APD)探测器阵列提供高灵敏度和能够在双线性和地革命模式下使用宽动态范围进行操作,用于被动和主动成像。虽然硅雪崩光电二极管提供了有希望的解决方案,但尚未开发大规模,高量子效率和高分辨率阵列,主要是由于这种探测器装置的制造复杂性增加,而诸如此类的更常见的非雪崩检测器(如) CCD和CMOS-APS设备。雪崩型检测器的一个主要制造挑战是要求在阵列中提供有效的直接和间接光学串扰隔离,因为雪崩增益过程产生可能在附近的像素中产生假检测事件的光子,从而增加噪声。虽然CCD阵列常见于12-30μm的像素间距和用于CMOS-APS器件的像素间距在10μm以下具有像素间距,但是对于雪崩光电二极管的建筑物阵列更具挑战性,例如,具有这样的小间距光学串扰。线性模式雪崩型探测器的第二个主要制造挑战,尤其是阵列临界致力于探测器增益均匀性。检测器增益均匀性是一个关键性能参数,因为增益过量噪声的增加将使探测器阵列不适合精密计量应用。由于固态雪崩探测器变小,因此由于较小的区域乘法区域而控制增益过度噪声变得更加困难,其中与较大的区域检测器相比,从掺杂曲线和电场的微小变化产生更大的增益可变性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号