首页> 外文会议>Conference on physics of medical imaging >Noise Performance Limits of Advanced X-ray Imagers Employing Poly-Si-Based Active Pixel Architectures
【24h】

Noise Performance Limits of Advanced X-ray Imagers Employing Poly-Si-Based Active Pixel Architectures

机译:采用基于多晶硅的有源像素架构的高级X射线成像仪的噪声性能限制

获取原文

摘要

A decade after the clinical introduction of active matrix, flat-panel imagers (AMFPIs), the performance of this technology continues to be limited by the relatively large additive electronic noise of these systems - resulting in significant loss of detective quantum efficiency (DQE) under conditions of low exposure or high spatial frequencies. An increasingly promising approach for overcoming such limitations involves the incorporation of in-pixel amplification circuits, referred to as active pixel architectures (AP) - based on low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). In this study, a methodology for theoretically examining the limiting noise and DQE performance of circuits employing 1-stage in-pixel amplification is presented. This methodology involves sophisticated SPICE circuit simulations along with cascaded systems modeling. In these simulations, a device model based on the RPI poly-Si TFT model is used with additional controlled current sources corresponding to thermal and flicker (1/f) noise. From measurements of transfer and output characteristics (as well as current noise densities) performed upon individual, representative, poly-Si TFTs test devices, model parameters suitable for these simulations are extracted. The input stimuli and operating-point-dependent scaling of the current sources are derived from the measured current noise densities (for flicker noise), or from fundamental equations (for thermal noise). Noise parameters obtained from the simulations, along with other parametric information, is input to a cascaded systems model of an AP imager design to provide estimates of DQE performance. In this paper, this method of combining circuit simulations and cascaded systems analysis to predict the lower limits on additive noise (and upper limits on DQE) for large area AP imagers with signal levels representative of those generated at fluoroscopic exposures is described, and initial results are reported.
机译:在临床上引入有源矩阵平板成像器(AMFPI)十年后,该技术的性能仍然受到这些系统相对较大的附加电子噪声的限制-导致在检测条件下显着降低了检测量子效率(DQE)低曝光或高空间频率的条件。克服这种局限性的一种越来越有前途的方法涉及引入基于低温多晶硅(poly-Si)薄膜晶体管(TFT)的像素内放大电路,该像素内放大电路被称为有源像素架构(AP)。在这项研究中,提出了一种用于理论上检查采用一级像素内放大的电路的极限噪声和DQE性能的方法。这种方法涉及复杂的SPICE电路仿真以及级联系统建模。在这些仿真中,基于RPI多晶硅TFT模型的器件模型与对应于热噪声和闪烁(1 / f)噪声的附加受控电流源一起使用。从对单独的代表性多晶硅多晶硅TFT测试设备执行的传输和输出特性(以及电流噪声密度)的测量中,提取出适合这些模拟的模型参数。电流源的输入激励和与工作点有关的缩放比例是从测量的电流噪声密度(对于闪烁噪声)或基本方程式(对于热噪声)得出的。从仿真中获得的噪声参数以及其他参数信息被输入到AP成像器设计的级联系统模型中,以提供DQE性能的估算值。在本文中,描述了这种将电路仿真与级联系统分析相结合的方法,以预测信号代表荧光透视曝光产生的信号的大面积AP成像器的附加噪声的下限(和DQE的上限)。被报道。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号