首页> 外文会议>Conference on physics of medical imaging >Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration
【24h】

Fast iterative image reconstruction using sparse matrix factorization with GPU acceleration

机译:使用稀疏矩阵分解和GPU加速的快速迭代图像重建

获取原文

摘要

Statistically based iterative approaches for image reconstruction have gained much attention in medical imaging. An accurate system matrix that defines the mapping from the image space to the data space is the key to high-resolution image reconstruction. However, an accurate system matrix is often associated with high computational cost and huge storage requirement. Here we present a method to address this problem by using sparse matrix factorization and parallel computing on a graphic processing unit (GPU). We factor the accurate system matrix into three sparse matrices: a sinogram blurring matrix, a geometric projection matrix, and an image blurring matrix. The sinogram blurring matrix models the detector response. The geometric projection matrix is based on a simple line integral model. The image blurring matrix is to compensate for the line-of-response (LOR) degradation due to the simplified geometric projection matrix. The geometric projection matrix is precomputed, while the sinogram and image blurring matrices are estimated by minimizing the difference between the factored system matrix and the original system matrix. The resulting factored system matrix has much less number of nonzero elements than the original system matrix and thus substantially reduces the storage and computation cost. The smaller size also allows an efficient implement of the forward and back projectors on GPUs, which have limited amount of memory. Our simulation studies show that the proposed method can dramatically reduce the computation cost of high-resolution iterative image reconstruction. The proposed technique is applicable to image reconstruction for different imaging modalities, including x-ray CT, PET, and SPECT.
机译:基于统计的图像重建迭代方法在医学成像中得到了广泛的关注。定义从图像空间到数据空间的映射的精确系统矩阵是高分辨率图像重建的关键。但是,准确的系统矩阵通常会带来较高的计算成本和巨大的存储需求。在这里,我们提出一种通过在图形处理单元(GPU)上使用稀疏矩阵分解和并行计算来解决此问题的方法。我们将精确的系统矩阵分解为三个稀疏矩阵:正弦图模糊矩阵,几何投影矩阵和图像模糊矩阵。正弦图模糊矩阵对检测器响应进行建模。几何投影矩阵基于简单的线积分模型。图像模糊矩阵用于补偿由于简化的几何投影矩阵而引起的响应线(LOR)下降。几何投影矩阵是预先计算的,而正弦图和图像模糊矩阵是通过最小化分解后的系统矩阵与原始系统矩阵之间的差异来估算的。所得的分解后的系统矩阵具有比原始系统矩阵少得多的非零元素数,因此大大减少了存储和计算成本。较小的尺寸还允许在内存有限的GPU上高效实现前向和后向投影仪。我们的仿真研究表明,该方法可以大大降低高分辨率迭代图像重建的计算成本。所提出的技术适用于针对不同成像模态的图像重建,包括X射线CT,PET和SPECT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号