首页> 外文会议>ASME Pressure Vessels and Piping Division/K-PVP conference;PVP2010 >NATURAL PWSCC CRACK GROWTH IN DISSIMILAR METAL WELDS WITH INLAY
【24h】

NATURAL PWSCC CRACK GROWTH IN DISSIMILAR METAL WELDS WITH INLAY

机译:带镶嵌的异种金属焊缝中的自然PWSCC裂纹生长

获取原文

摘要

The commercial nuclear power industry has proposed several mitigation techniques to address safety concerns due to primary water stress corrosion cracking (PWSCC) in nickel-based dissimilar metal (DM) welds (specifically Alloy 82/182 welds) in pressurized water reactors (PWRs). Since many of these welds reside in primary piping systems that have been approved for Leak-Before-Break (LBB), the mitigation strategies chosen must ensure that these systems still satisfy the LBB criteria. Mechanical Stress Improvement Process (MSIP), Full and Optimized Structural Weld Overlay (FSWOL, OWOL), and Inlay and Onlay cladding are examples of the currently proposed mitigation methods. This paper focuses on an evaluation of the inlay process for the mitigation of PWSCC since it may be the technique of choice for the large-diameter reactor coolant nozzles. Currently the ASME Section XI code is developing Code Case N-766 'Nickel Alloy Reactor Coolant Inlay and Cladding for Repair or Mitigation of PWR Full Penetration Circumferential Nickel Alloy Welds in Class 1 Items.' This code case is documenting the procedures for applying inlay welds.The residual stresses caused by the inlay process were used to model the natural crack growth through the inlay in this paper. The inlay residual stresses and modeling methods are presented in a companion paper. Since the PWSCC crack growth rate is much slower in the inlay material (Alloy 52) compared with the Alloy 82/182 weld metal, the crack growth shape retains a 'bubble' appearance. This shape is a challenge to model within the framework of advanced finite element based natural crack growth methods. This paper focuses on the crack growth modeling challenges, the actual growth shapes for different weld repair and inlays processes, and finally compares crack growth rates to those made using a simple crack growth shape.
机译:商业核电行业已经提出了几种缓解技术,以解决由于压水堆(PWR)中的镍基异种金属(DM)焊缝(特别是82/182合金焊缝)中的一次水应力腐蚀开裂(PWSCC)而引起的安全隐患。由于这些焊缝中有许多位于已批准用于先漏后断(LBB)的主要管道系统中,因此,所采用的缓解策略必须确保这些系统仍满足LBB标准。机械应力改善工艺(MSIP),完整和优化的结构堆焊层(FSWOL,OWOL)以及嵌体和嵌体包层是目前提出的缓解方法的示例。本文主要针对缓解PWSCC的镶嵌工艺进行评估,因为它可能是大直径反应堆冷却剂喷嘴的首选技术。目前,ASME第XI节规范正在开发规范案例N-766“镍合金反应堆冷却剂嵌体和熔覆层,用于维修或缓解1类PWR全渗透周向镍合金焊缝”。该代码案例记录了应用镶嵌焊缝的过程。 本文利用镶嵌过程引起的残余应力来模拟镶嵌过程中的自然裂纹扩展。嵌体残余应力和建模方法在随附的论文中提供。由于与合金82/182焊缝金属相比,镶嵌材料(合金52)中的PWSCC裂纹扩展速度要慢得多,因此裂纹扩展形状保留了“气泡”外观。这种形状是在基于高级有限元的自然裂纹扩展方法框架内进行建模的挑战。本文着重于裂纹扩展建模挑战,不同焊缝修复和镶嵌工艺的实际扩展形状,最后将裂纹扩展速率与使用简单裂纹扩展形状制成的扩展速率进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号