首页> 外文会议>ASME international heat transfer conference;IHTC14 >ENHANCEMENT OF HEAT TRANSFER WITH POOL AND SPRAY IMPINGEMENT BOILING ON MICROPOROUS AND NANOWIRE SURFACE COATINGS
【24h】

ENHANCEMENT OF HEAT TRANSFER WITH POOL AND SPRAY IMPINGEMENT BOILING ON MICROPOROUS AND NANOWIRE SURFACE COATINGS

机译:微孔和纳米表面涂层上的池和喷溅沸腾沸腾增强传热

获取原文

摘要

The National Renewable Energy Laboratory (NREL) is leading a national effort to develop next-generation cooling technologies for hybrid vehicle electronics, as part of the Advanced Power Electronics and Electrical Machines program area in the U.S. Department of Energy's (DOE's) Vehicle Technologies Program. The overarching goal is to reduce the size, weight, and cost of power electronic modules that convert direct current from the batteries to alternating current for the motor, and vice versa. Aggressive thermal management techniques help in achieving the goals of increased power density and reduced weight and volume, while keeping the chip temperatures within acceptable limits. The viability of aggressive cooling schemes such as spray and jet impingement in conjunction with enhanced surfaces is being explored as part of the program. In this work, we present results from a series of experiments with pool and spray boiling on enhanced surfaces, such as a microporous layer of copper and copper nanowires, using HFE-7100 as the working fluid. Spray impingement on the microporous coated surface showed an enhancement of 100%-300% in the heat transfer coefficient at a given wall superheat with respect to spray impingement on a plain surface under similar operating conditions. The critical heat flux also increased by 7%-20%, depending on the flow rates. Heat transfer coefficients obtained on the nanowire-grown surface are considerably better than those obtained on the plain surface, although the enhancement is lower than those obtained on the microporous surface. The critical heat flux is also considerably lower for the nanowire surface than for the plain surface.
机译:全国可再生能源实验室(NREL)领导着全国努力为混合动力汽车电子开发下一代冷却技术,作为美国能源部(DOE的)车辆技术计划中的先进电力电子和电气机械面积的一部分。总体目标是降低电力电子模块的尺寸,重量和成本,其将直流电流从电池转换为电机的交流电,反之亦然。积极的热管理技术有助于实现功率密度增加和减轻重量和体积的目标,同时将芯片温度保持在可接受的限度内。正在探索侵略性冷却方案的可行性,例如喷射和喷射冲击和喷射冲击,作为该程序的一部分。在这项工作中,我们使用泳池的一系列实验提出了一系列实验,并使用HFE-7100作为工作流体,例如铜和铜纳米线的微孔层上喷洒沸腾。在微孔涂覆表面上的喷雾冲击显示在相似的操作条件下,给定壁的传热系数在给定的壁上过热的传热系数中的增强100%-300%。临界热通量也增加了7%-20%,这取决于流速。尽管增强低于在微孔表面上获得的那些,但在纳米线生长表面上获得的传热系数比在平原表面上获得的热传递系数显着更好。对于纳米线表面而言,临界热通量也比平面表面相当低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号