首页> 外文会议>ASME international heat transfer conference;IHTC14 >3D INTEGRATED WATER COOLING OF A COMPOSITE MULTILAYER STACK OF CHIPS
【24h】

3D INTEGRATED WATER COOLING OF A COMPOSITE MULTILAYER STACK OF CHIPS

机译:复合多层芯片的3D集成水冷却

获取原文

摘要

New generation supercomputers with three dimensional stacked chip architectures pose a major challenge with respect to removal of dissipated heat which can reach currently as high as 250 W/cm2 in multilayer chip stacks of less than 0.3 cm3 volume. Interlayer integrated water cooling [1] is a very promising approach for such high heat flux removal due to much larger thermal capacity and conductivity of water compared to air, the traditional cooling fluid. In the current work, a multiscale conjugate heat transfer model is developed for integrated water cooling of chip layers and validated with experimental measurements on a specially designed thermal test vehicle that simulates a four tier chip stack with a footprint of 1 cm2. The cooling heat transfer structure, which consists of microchannels with cylindrical pin fins, is conceived in such a way that it can be directly integrated with the device layout in multilayer chips. Every composite layer is cooled by water flow in microchannels (height: 100 urn), which are arranged in 2 port water inlet-outlet configuration. The total power removed in the stack is 390 W at a temperature gradient budget of 60 K from liquid inlet to maximal junction temperature, corresponding to about 1.3 kW/cm3 volumetric heat flow. The computational cost and complexity of detailed CFD modeling of heat transfer in stacked chips with integrated cooling can be prohibitive. Therefore, the heat transfer structure is modeled using a porous medium approach, where the model parameters of heat transfer and hydrodynamic resistance are derived from averaging the results of the detailed 3D-CFD simulations of a single stream-wise row of fins. The modeling results indicate that an isotropic porous medium model does not accurately predict the measured temperature fields. The variation of material properties due to temperature gradients arefound to be large, therefore variable properties are used in the model. It is also shown that the modeling of the heat transfer in the cooling sublayers requires the implementation of a porous medium approach with a local thermal non-equilibrium as well as orthotropic heat conduction and hydrodynamic resistance. The improved model reproduces the temperatures measured in the stack within 10%. The model is used to predict the behavior of multilayer stacks mimicking the change of heat fluxes resulting from variations in the computational load of the chips during their operation.
机译:具有三维堆叠式芯片架构的新一代超级计算机在散热方面面临着重大挑战,目前在体积小于0.3 cm3的多层芯片堆栈中,散热高达250 W / cm2。层间集成水冷却[1]是一种非常有前途的方法,因为与传统的冷却流体空气相比,水的热容量和电导率要高得多,因此它具有很高的热通量去除率。在当前的工作中,开发了用于芯片层的集成水冷的多尺度共轭传热模型,并在专门设计的热测试工具上通过实验测量进行了验证,该工具模拟了面积为1 cm2的四层芯片堆栈。冷却传热结构由带有圆柱状针状翅片的微通道组成,其构想方式使其可以直接与器件布局集成在多层芯片中。每个复合层均通过微通道中的水流冷却(高度:100 flow),这些微通道以2口进水/出水口配置。在从液体入口到最高结温的60 K温度梯度预算下,烟囱中去除的总功率为390 W,相当于约1.3 kW / cm3的体积热流。具有集成冷却功能的堆叠芯片中传热的详细CFD模型的计算成本和复杂性可能令人望而却步。因此,使用多孔介质方法对传热结构进行建模,其中传热和流体动力阻力的模型参数是通过对单个单向流翅片的详细3D-CFD模拟结果进行平均得出的。建模结果表明,各向同性多孔介质模型不能准确预测测得的温度场。由于温度梯度导致的材料特性变化为 由于发现体积较大,因此在模型中使用了可变属性。还显示出,在冷却子层中的传热建模需要实施具有局部热不平衡以及正交各向异性的热传导和流体动力阻力的多孔介质方法。改进的模型可将烟囱中测得的温度再现在10%以内。该模型用于预测多层堆叠的行为,该行为模仿了芯片运行过程中由于计算负载的变化而引起的热通量变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号