首页> 外文会议>ASME Joint US-European Fluids Engineering Division summer meeting;FEDSM2010 >COMPUTATIONAL STUDY OF AERIAL SPRAYS USED FOR FOREST PROTECTION
【24h】

COMPUTATIONAL STUDY OF AERIAL SPRAYS USED FOR FOREST PROTECTION

机译:防护林用航空喷雾的计算研究

获取原文

摘要

The efficacy of pesticide sprays is strongly dependent on the accuracy of the droplet size spectrum. Over estimates of droplet size may result in excessive drift or ineffective doses, while un-der estimates of droplet size result in excessive releases. This situation is not only bad for the environment; it incurs large op-erating costs (spray usually accounts for 30% of total cost). This paper describes the study of droplet sprays commonly used in the agriculture and forestry management. It combines experimental wind tunnel testing and Computational Fluid Dynamic (CFD) methods to develop a fundamental understanding of droplet gen-eration and dispersion in the wake of the atomizer spray system. The results will assist designers of spray technology and appli-cators in delivering pesticide to its target. The CFD models that are developed and calibrated will further allow the wind tunnel data to be generalized; thus, allowing less wind tunnel testing and eventually direct simulation of droplet dispersion in aircraft wakes.The CFD models are developed for the poly-dispersed sprays released from a Micronair AU4000 atomizer (a stan-dard atomizer used for forest protection) at an airspeed of 67 m/s. Simulations are performed using a Lagrangian (droplet phase) - Eulerian (fluid phase) procedure and include droplet drag/body forces and turbulent dispersion of droplets. The Base-line Reynolds Stress Model (BSL RSM) turbulence model is used to compute turbulence levels in the air phase. The CFD simula-tions include the sprayer and a large portion of the wind tunnel geometry in order to facilitate in validation. The computational results are compared to full scale experimental measurements of pressure, gas phase velocity, droplet velocity, and droplet size spectra measured using Phase Doppler Interferometry (PDI) and Hotwire Anemometry. Measurements are available along radial lines at 0.5, 1, 2 and 4 m downstream of the atomizer.
机译:农药喷雾的功效在很大程度上取决于液滴尺寸谱的准确性。液滴大小的过度估计可能会导致过度漂移或无效剂量,而液滴大小的不足估计会导致过度释放。这种情况不仅对环境不利,而且对环境不利。它会产生高昂的运营成本(喷雾通常占总成本的30%)。本文介绍了农业和林业管理中常用的液滴喷雾的研究。它结合了实验性风洞测试和计算流体力学(CFD)方法,以发展对雾化器喷雾系统后液滴的产生和扩散的基本了解。结果将帮助喷雾技术的设计者和施药者将农药输送到目标。开发和校准的CFD模型将进一步使风洞数据得到概括;因此,CFD模型是针对Micronair AU4000雾化器(用于森林保护的标准雾化器)以空速2升释放的多分散喷雾而开发的。 67 m / s。使用拉格朗日(液滴相)-欧拉(流体相)程序进行模拟,并包括液滴阻力/体力和液滴的湍流分散。基线雷诺应力模型(BSL RSM)湍流模型用于计算气相中的湍流水平。 CFD模拟包括喷雾器和风洞几何形状的很大一部分,以便于验证。将计算结果与使用相多普勒干涉仪(PDI)和热线风速仪测量的压力,气相速度,液滴速度和液滴尺寸光谱的满量程实验测量结果进行比较。可以在雾化器下游的0.5、1、2和4 m处沿径向线进行测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号