首页> 外文会议>European corrosion congress;EUROCORR 2010 >Effects of Geomagnetic Disturbances on Pipelines
【24h】

Effects of Geomagnetic Disturbances on Pipelines

机译:地磁干扰对管道的影响

获取原文
获取外文期刊封面目录资料

摘要

Time-varying geomagnetic field affects extended conducting systems at or near the earth's surface causing induced or telluric currents. A changing pipe-to-soil potential (PSP) can be dangerous for pipelines. Electric field variations caused by geomagnetic disturbances can disturb operation of the system of cathode protection and even cause an intensified corrosion at the places of electrodes protecting joints. The systems operating in high latitudes are mostly vulnerable to impacts of induced fields systems because these are the regions where strong ionospheric currents are developing during geomagnetic storms. A corrosion pit caused by telluric currents was found in the pipeline in Quebec, Canada, after 5 years of its operation [1]. The chain of physical phenomena causing significant telluric currents is the following: a disturbance appearing on the Sun is spreading through the interplanetary media (solar wind disturbances) causing magnetospheric disturbances and changes the interconnection between the magnetosphere and the ionosphere at that the induced ionospheric currents generate variations of the magnetic field (a magnetic storm) and geomagnetically induced (telluric) currents (GIC) on the Earth surface and conducting networks. Figure 1 can be taken as an example of such a chain of events [1]. A solar flare and associated coronal mass ejection occurred on 4 April 2000. This disturbance was recorded at ACE satellite on 6 April at 16:03 as large changes in magnetic field and solar wind speed. Changes in magnetosphere-ionosphere interaction leads to creation of a large eastward electrojet started at 18:00, as seen from geomagnetic recordings in Ottawa magnetic observatory. Recordings of the ground electric field in Ontario, GIC in Ontario power system and telluric currents in Martime pipeline had a maximum around midnight on 6 April. In the first order variations of ionospheric currents are the reason of inductive fields at the ground. Ionospheric currents (or jets) are flowing at approximately 100 km altitude and during a strong magnetic storm can rich the magnitude up to 10~6 A. Scale dimensions are of the order (1-3) • 10~3 km in E-W direction and up to 100 km along meridian. Frequency of jets (and consequently GIC) variations ranges from 10~(-4) (12 hours diurnal variations) to a few Hz (pulsations). The magnitude of time derivative of horizontal magnetic component (dB/dt) can be used for estimation of inductive electric field [2], dB/dt>200 nT/min corresponds to strong enough disturbance with Et ~ 1 V/km [3].
机译:时变的地磁场会影响地球表面或附近的扩展导电系统,从而引起感应或碲电流。不断变化的管道对土壤的电势(PSP)对管道可能是危险的。由地磁干扰引起的电场变化会干扰阴极保护系统的运行,甚至会在保护接头的电极处引起腐蚀加剧。在高纬度地区运行的系统最容易受到感应场系统的影响,因为这是在地磁风暴期间正在形成强电离层电流的区域。在运行了5年后,在加拿大魁北克的管道中发现了由碲电流引起的腐蚀坑[1]。引起显着的大地电流的一系列物理现象如下:太阳上出现的扰动正在通过行星际介质传播(太阳风扰动),从而引起磁层扰动,并改变了磁层和电离层之间的相互联系,从而产生了感应电离层电流。地表和导电网络上磁场(磁暴)和地磁感应(电磁)电流(GIC)的变化。图1可以作为此类事件链的示例[1]。 2000年4月4日发生了太阳耀斑和相关的日冕物质抛射。4月6日16:03在ACE卫星记录了这种干扰,这是磁场和太阳风速的大变化。从渥太华磁性天文台的地磁记录可以看出,磁层与电离层相互作用的变化导致产生了始于18:00的大型东向电喷流。 4月6日午夜前后,安大略省地面电场,安大略省电力系统的GIC和海事管道中的大电流记录最高。首先,电离层电流的变化是地面感应场的原因。电离层电流(或射流)在大约100 km的高度流动,在强磁暴期间可以充盈高达10〜6 A的量级。尺度尺寸为(1-3)•EW方向上约为10〜3 km,沿子午线长达100公里。射流的频率(以及随之而来的GIC)变化范围从10〜(-4)(12小时昼夜变化)到几赫兹(脉动)。水平磁分量的时间导数的大小(dB / dt)可用于估算感应电场[2],dB / dt> 200 nT / min对应于Et〜1 V / km时足够强的干扰[3] 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号