首页> 外文会议>ASME international pipeline conference;IPC2010 >ENGINEERING CRITICAL ASSESSMENT IN THE COMPLEX GIRTH WELDS OF CLAD AND LINED LINEPIPE MATERIALS
【24h】

ENGINEERING CRITICAL ASSESSMENT IN THE COMPLEX GIRTH WELDS OF CLAD AND LINED LINEPIPE MATERIALS

机译:衬里和衬里线管材料复杂周长的工程关键评估

获取原文

摘要

The nature of aggressive hydrocarbon reservoir fluids places demands upon material selection for linepipe that can only be met by the use of corrosion resistant alloys (CRAs): either in solid form; or as an internal liner or clad layer combined with a carbon steel substrate. Design and construction guidance for such flowline systems is presently not comprehensive in offshore pipeline standards, even for cases where the CRA layer could be ignored in terms of structural design. Offshore pipelines designed and fabricated in accordance with DNV OS-F101 benefit from the standard allowing flaw acceptance levels for girth welds to be determined based on an engineering critical assessment (ECA).The linepipe materials presently available fall into two main categories: clad, where the CRA layer is metallurgically bonded to the carbon steel substrate; and lined, where the CRA liner is mechanically bonded in place within the carrier pipe. These products present a mixture of common and unique challenges when designing and welding flowlines. In particular, the welds in these materials are typically more complex than in rigid C-Mn flowlines and this fact is reflected in the difficulty in conducting ECAs using the available conventional guidance. Due to production limitations on linepipe dimensions, it may also be necessary to explicitly take account of the strength of the clad layer in the overall design, including assessing integrity and fracture control across the full (composite) wall thickness.This paper discusses conducting ECAs in such complex weldments whilst addressing the implications of these challenges. Reference is made to experience gained from two projects; where, in the most recent of these (the Deep Panuke project), new guidance on conducting such ECAs has been implemented for the first time. The Deep Panuke flowlines comprise: four 8in production flow-lines in clad pipe with a 12.5mm WT grade 415 (X60) carbon steel substrate and aninternal 2.5mm Incoloy Alloy 825 clad layer; and a single 3in acid gas flowline in solid Inconel Alloy 625. Both lines will be welded by manual GTAW using 686 filler material. The nominal level of installation plastic strain for the project ranges up to 1.7% in the case of the 8in line so the additional complexities of cyclic plastic deformation during installation must also be addressed by the ECA using constraint-matched SENT fracture mechanics specimens and a tearing instability fracture assessment.The challenge of achieving adequate strength in the weld is ever-present but the intrinsic yield strength limitations of CRA materials makes the probability of an undermatching condition high enough (despite a strong focus during weld procedure development) that the ECA philosophy has to be able to accommodate a potential weld undermatching condition. Broadly speaking, the strategy adopted is to use finite element analysis (FEA) to model the crack driving force (in terms of J or CTOD) of a flaw in an undermatched weld used in order to support and, where necessary, calibrate BS7910 type fracture mechanics assessments. The assessment will thus be fine-tuned to account for the actual level of undermatch present. The methodology is a new one and is a first for the Deep Panuke project. A case study from an earlier project on lined pipe is also presented for comparison.
机译:腐蚀性烃储层流体的性质在线选择LinePipe的材料选择,只能通过使用耐腐蚀合金(CRAs)(CRAs)来满足:以固体形式;或作为与碳钢基板结合的内衬或包层层。这些流线系统的设计和施工指导目前在海上管道标准中并不全面,即使对于在结构设计方面可以忽略CRA层的情况。根据DNV OS-F101设计和制造的海上管道受益于允许基于工程关键评估(ECA)来确定周长焊缝的标准。 当目前,LINEPIPE材料可分为两个主要类别:包层,CRA层冶金粘合到碳钢基板上;并排列,其中CRA衬里机械地粘合到载体管内。这些产品在设计和焊接流动线时呈现了共同和独特的挑战的混合。特别地,这些材料中的焊缝通常比刚性C-Mn流线中的焊缝更复杂,并且这种事实反映了使用可用的常规引导进行ECA的难题。由于线管尺寸的生产限制,也可能需要明确地考虑整体设计中的包层层的强度,包括评估整个(复合材料)壁厚的完整性和断裂控制。 本文讨论了这种复杂焊接中进行了ECA,同时解决了这些挑战的含义。参考来自两个项目的经验;在其中,在最近上最近的(深度Panuke项目)中,首次实施了进行此类ECA的新指南。深度平板流动线包括:三个8IN生产流量线,具有12.5mm WT等级415(X60)碳钢基板和一个 内部2.5mm枚价合金825包层;固体Inconel合金625中的单个3英寸酸气流线。两条线将通过手动GTAW使用686填料材料焊接。在8英寸的情况下,该项目的安装塑性应变的标称安装塑料应变级别高达1.7%,因此ECA使用约束匹配的骨折力学样本和撕裂,ECA也必须解决循环塑性变形的额外复杂性。不稳定骨折评估。 在焊缝中实现足够强度的挑战是永远存在的,但CRA材料的内在屈服强度限制使得不足以足够高的概率(尽管在焊接程序开发期间强烈焦点),所以ECA哲学必须能够容纳潜在的焊接支撑条件。广泛地说,采用的策略是使用有限元分析(FEA)来模拟缺陷在使用的缺陷中的裂缝驱动力(J或CTOD而言),以便在必要时校准BS7910型骨折力学评估。因此,评估将进行微调,以考虑存在的实际暂存水平。该方法是一个新的,是深度Panuke项目的第一个。还提出了从衬里管道上的早期项目进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号