首页> 外文会议>International congress on advances in nuclear power plants;ICAPP 2010 >Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)
【24h】

Neutronics Design of a Thorium-Fueled Fission Blanket for LIFE (Laser Inertial Fusion-based Energy)

机译:用于LIFE(基于激光惯性聚变的能量)的Thor燃料裂变毯的中子学设计

获取原文

摘要

The Laser Inertial Fusion-based Energy (LIFE) project at LLNL includes development of hybrid fusion-fission systems for energy generation. These hybrid LIFE engines use high-energy neutrons from laser-based inertial confinement fusion to drive a subcritical blanket of fission fuel that surrounds the fusion chamber. The fission blanket contains TRISO fuel particles packed into pebbles in a flowing bed geometry cooled by a molten salt (flibe). LIFE engines using a thorium fuel cycle provide potential improvements in overall fuel cycle performance and resource utilization compared to using depleted uranium (DU) and may minimize waste repository and proliferation concerns. A preliminary engine design with an initial loading of 40 metric tons of thorium can maintain a power level of 2000 MW_(th), for about 55 years, at which point the fuel reaches an average burnup level of about 75% FIMA. Acceptable performance was achieved without using any zero-flux environment "cooling periods" to allow ~(233)Pa to decay to ~(233)U; thorium undergoes constant irradiation in this LIFE engine design to minimize proliferation risks and fuel inventory. Vast reductions in end-of-life (EOL) transuranic (TRU) inventories compared to those produced by a similar uranium system suggest reduced proliferation risks. Decay heat generation in discharge fuel appears lower for a thorium LIFE engine than a DU engine but differences in radioactive ingestion hazard are less conclusive. Future efforts on development of thorium-fueled LIFE fission blankets engine development will include design optimization, fuel performance analysis work, and further waste disposal and nonproliferation analyses.
机译:LLNL的基于激光惯性聚变的能源(LIFE)项目包括开发混合聚变裂变系统以产生能量。这些混合式LIFE发动机使用来自基于激光的惯性约束聚变的高能中子来驱动围绕聚变室的裂变燃料的亚临界裂变层。裂变层包含TRISO燃料颗粒,该颗粒以流化床几何形状填充到鹅卵石中,并由熔融盐(流带)冷却。与使用贫铀(DU)相比,使用or燃料循环的LIFE发动机可在总体燃料循环性能和资源利用率方面提供潜在的改善,并可以最大程度地减少废物储存和扩散问题。初始负载为40公吨th的初步发动机设计可以维持2000兆瓦(th)的功率水平,持续约55年,此时燃料达到FIMA的平均燃耗水平约75%。在不使用任何零通量环境“冷却时间”以使〜(233)Pa衰减至〜(233)U的情况下,可以达到可接受的性能。在这种LIFE发动机设计中,不断受到辐照,以最大程度地降低扩散风险和燃料库存。与类似铀系统生产的产品相比,寿命结束(EOL)的超铀(TRU)库存的大量减少表明了扩散风险的降低。对于or LIFE发动机,排放燃料中产生的衰变热量似乎比DU发动机低,但放射性摄入危害的差异尚无定论。未来开发on燃料的LIFE裂变毯发动机的工作将包括设计优化,燃料性能分析工作以及进一步的废物处理和防扩散分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号