【24h】

TRAJECTORY SIMULATIONS FOR LASER-LAUNCHED MICROSATELLITES USING A7-DOF FLIGHT DYNAMICS MODEL

机译:基于A7-DOF飞行动力学模型的激光轰击微卫星弹道仿真

获取原文

摘要

Laser launch trajectories are being developed for boosting nano- and micro-satellite sized payloads (i.e., 1 to 100 kg) using a 7-Degree Of Freedom (DOF) flight dynamics model that has been extensively calibrated against 16 actual trajectories of small scale model lightcraft flown at White Sands Missile Range, NM on a 10 kW pulsed CO2 laser called PLVTS. The full system 7-DOF model is comprised of individual aerodynamics, engine, laser beam propagation, variable vehicle inertia, reaction controls system, and dynamics models, integrated to represent all major phenomena in a consistent framework. The suborbital trajectory results presented herein are for a 240 cm diameter lightcraft (100 kg payload; 100 MW beam power) flown under three different laser-boost scenarios: 1) liftoff and vertical climb-out on a vertically oriented laser beam; 2) liftoff and climb-out along a constant laser beam pointing angle (fixed azimuth and zenith) defined relative to the launch pad; 3) liftoff and climb-out on a beam with a time-varying pointing schedule (azimuth and zenith) to "slingshot" the lightcraft laterally, making maximum use of the engine's autonomous beam-riding feature. For simplicity, simulations assume a solid ablative rocket propellant (e.g., Teflon?-like performance) with a vacuum specific impulse of 644 seconds, momentum coupling coefficient of 190 N/MW, and overall efficiency of 60%. This flight dynamics model and associated 7-DOF code provide a physics-based predictive tool for basic research investigations into laser launched lightcraft for suborbital and orbital missions. An investigative protocol was developed to identify and quantify phenomena that dominateeach phase of the launch trajectory. These protocols are specified herein, along with physics-based explanations for such phenomena, both predicted and observed.
机译:正在开发激光发射轨迹,以使用7度自由度(DOF)飞行动力学模型来增强纳米和微卫星大小的有效载荷(即1至100千克),该模型已针对16种小规模模型的实际轨迹进行了广泛校准一架名为PLVTS的10 kW脉冲CO2激光器在新墨西哥州的白沙导弹靶场飞行。完整的系统7自由度模型由单独的空气动力学,发动机,激光束传播,可变的车辆惯性,反作用控制系统和动力学模型组成,这些模型集成在一起以在一致的框架中表示所有主要现象。本文呈现的亚轨道轨迹结果是针对在三种不同的激光升压情况下飞行的直径240厘米的飞行器(有效载荷100 kg;光束功率100 MW)进行的:1)在垂直定向的激光束上升空和垂直爬升; 2)沿相对于发射台定义的恒定激光束指向角(固定方位角和天顶)升起和爬出; 3)使用时变指向时间表(方位角和天顶)在光束上升起和爬出,以横向“弹弓”飞行器,从而最大程度地利用发动机的自主光束骑乘功能。为简单起见,模拟假设使用固体烧蚀火箭推进剂(例如,类似铁氟龙的性能),真空比脉冲为644秒,动量耦合系数为190 N / MW,总效率为60%。该飞行动力学模型和相关的7自由度代码提供了基于物理学的预测工具,可用于对用于亚轨道和轨道任务的激光发射飞行器进行基础研究。研究方案被开发出来,以识别和量化占主导地位的现象。 发射轨迹的每个阶段。在本文中指定了这些协议,以及针对此类现象的基于物理学的解释(包括预测的和观察到的)。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号