首页> 外文会议>2010 International Symposium on Micro-NanoMechatronics and Human Science >Multi-scale molecular genetics of prokaryotic genome regulation
【24h】

Multi-scale molecular genetics of prokaryotic genome regulation

机译:原核基因组调控的多尺度分子遗传学

获取原文

摘要

The molecular mechanism and regulation of transcription by DNA-binding regulatory proteins was developed using a single model prokaryote Escherichia coli. For bacterial survival in nature, however, stress-response genes are expressed in various combinations but at present, little is known how specific sets of the genes on the genome are selected for expression. Since the total number of RNA polymerase molecules in E. coli is less than the number of genes on the genome, we proposed a model that the genome expression pattern is determined by selective distribution of transcription apparatus between a total of 4,500 genes, and that the gene selectivity control of RNA polymerase is modulated after interaction of transcription factors (Fig. 1) (Ishihama 2000). We then initiated a multi-scale molecular genetics for identification of the regulatory roles of 300 species of transcription factors in E. coli (Ishihama 2009). For this purpose, we have developed ‘Genomic SELEX’ system for identification of the regulation target promoters, genes or operons by each transcription factor. Here we report the progress of on-going Genomic SELEX screening of regulation targets of E. coli transcription factors (Ishihama 2010): 1) Regulation targets have been identified for a number of uncharacterized transcription factors; 2) most of the E. coli promoters are regulated by a number of transcription factors, and some complex promoters such as the csgD promoter of the master regulator of biofilm formation are under the control of more than 10 transcription factors as in the case of eukaryotes; 2) the number of regulation targets by a single transcription factor are more than those hitherto recognized, ranging up to hundreds of genes for several global regulators such as CRP and Cra for control of the set of genes for transport and metabolism of carbon sources; and 3) the multi-factor promoters and the multi-target transcription factors form complex hierarchical networks of g--enome regulation.
机译:DNA结合调节蛋白的分子机制和转录调控是使用单一模型的原核大肠杆菌开发的。然而,对于自然界中的细菌存活,应激反应基因以各种组合表达,但是目前,对于如何选择基因组上的特定基因集进行表达尚知之甚少。由于大肠杆菌中RNA聚合酶分子的总数少于基因组上的基因数目,因此我们提出了一个模型,该模型的基因组表达模式由转录设备在总共4,500个基因之间的选择性分布决定,并且转录因子相互作用后,RNA聚合酶的基因选择性控制得以调节(图1)(Ishihama 2000)。然后,我们启动了一种多尺度分子遗传学,用于鉴定大肠杆菌中300种转录因子的调控作用(石滨(Ishihama)2009)。为此,我们开发了“ Genomic SELEX”系统,用于通过每种转录因子鉴定调控靶标启动子,基因或操纵子。在这里,我们报告了正在进行的针对大肠杆菌转录因子调控靶标的基因组SELEX筛选的进展(Ishihama,2010年):1)已为许多未表征的转录因子鉴定了调控靶标; 2)大多数大肠杆菌启动子受许多转录因子调控,如真核生物,某些复杂的启动子(如生物膜形成的主要调控因子的csgD启动子)受10多个转录因子的控制; 2)单个转录因子的调控靶标数量比迄今公认的要多,多达数百种基因供多个全球调控因子(如CRP和Cra)用于控制碳源运输和代谢的基因集; 3)多因子启动子和多靶标转录因子形成复杂的g- -- 烯醇调节。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号