首页> 外文会议>2010 Abstracts IEEE International Conference on Plasma Science >Heating in the stagnation phase of the dynamic dense Z-pinch
【24h】

Heating in the stagnation phase of the dynamic dense Z-pinch

机译:动态致密Z捏陷停滞阶段的加热

获取原文

摘要

It is well known that the energy radiated at the stagnation phase of a dynamic Z-pinch can be 3 or 4 times the kinetic energy of the imploding plasma.1,2 On the other hand some experiments do not show this effect.3 This can be resolved by considering the various regimes of MHD behaviour, particularly for the m=0 instability at short wavelengths. High or low values of the Reynolds'' number, the magnetic Reynolds'' number, and particularly the magnetic Prandtl number Pm delineate the behaviour. It is clear that for this effect to be present the viscous dissipation must dominate over resistive dissipation. Another important parameter is the ratio of the equipartition time to the radial Alfvén transit time. When this is greater than one, and Pm4. On the other hand when equipartition is fast but a high Z plasma is employed it is the electron viscosity which is dominant and will convert magnetic energy via saturated MHD modes directly into electron thermal energy and thence to radiation. Unfortunately current resistive MHD simulations do not include real viscosity, but only an artificial viscosity of larger magnitude. Nevertheless in simulations about 70% of the energy radiated is found to arise from this numerical heating5. But it does lead to an artificially enhanced Pm, and the modes involved will have longer wavelength and larger amplitude. This fast heating via fast growing short wavelength instabilities is an excellent feature of Z-pinches for both ICF and K-alpha sources. It also removes the so-called limiting current proposed by Pease6 and Braginskii7 above which radiative collapse would occur. Furthermore it can lead to enhanced ion heating in deuterium --gas-puff Z-pinches8 and a neutron yield of 3×l013.
机译:众所周知,在动态Z捏的停滞阶段辐射的能量可以是内爆等离子体动能的3或4倍。 1,2 另一方面,有些实验却没有 3 可以通过考虑MHD行为的各种方式来解决这一问题,特别是对于短波长下m = 0的不稳定性。雷诺数,磁雷诺数,特别是磁普朗特数P m 的高或低都描述了这种行为。显然,要使这种效果出现,粘性耗散必须超过电阻耗散。另一个重要参数是均分时间与径向Alfvén传递时间的比率。当该值大于1且P m > l时,由动能热化产生的离子温度持续高于电子温度,并且在停滞阶段确实可以升高至300keV < sup> 4 。另一方面,当等分很快但采用高Z等离子体时,则主要是电子粘度,它将通过饱和MHD模式将磁能直接转换为电子热能,然后转换为辐射。不幸的是,当前的电阻式MHD模拟不包括实际粘度,而仅包括较大的人工粘度。然而,在模拟中,发现大约70%的辐射能量来自此数值加热 5 。但这确实导致了人为增强的P m ,并且所涉及的模式将具有更长的波长和更大的振幅。通过快速增长的短波长不稳定性实现的这种快速加热是ICF和K-alpha光源的Z夹点的出色特性。它还消除了Pease 6 和Braginskii 7 提出的所谓的极限电流,在该极限电流之上会发生辐射塌陷。此外,它可以导致氘中离子的加热增强- -- 气嘴Z捏 8 ,中子产率为3×l0 13

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号