首页> 外文会议>2010 Abstracts IEEE International Conference on Plasma Science >Benefits of higher-order particles in simulating microwave plasma interactions using a Particle-in-Cell code
【24h】

Benefits of higher-order particles in simulating microwave plasma interactions using a Particle-in-Cell code

机译:使用粒子中的代码模拟高阶粒子在模拟微波等离子体相互作用中的优势

获取原文

摘要

Researchers often would like to apply Particle-in-Cell (PIC) methods to model cold, high pressure plasmas in order to discern any kinetic, nonlinear or space charge effects. However, the PIC method typically does not perform well at low temperatures and high densities due to limitations on time and space scales for numerical and practical reasons. One of these limitations is the requirement to resolve the Debye length. Failure to resolve the Debye length in a PIC simulation typically results in artificial heating of the plasma known as grid heating. For applications such as plasma processing, the rate of plasma production is a sensitive function of the electron temperature, so grid heating can make simulation results entirely unreliable. The use of higher-order particle algorithms that smooth out the particle current and charge can help to eliminate this unphysical heating and allow cold, dense plasmas to be simulated using PIC. We present results of using higher-order particles for modeling a plasma sustained by microwaves and we compare to results using standard first-order particles. Specifically, we compare the electron temperature, sheath size, and rate of plasma formation for simulations with an argon gas of 0.05 Torr pressure with an applied microwave power at 2.45 GHz.
机译:研究人员通常希望应用细胞内颗粒(PIC)方法对冷的高压等离子体进行建模,以识别任何动力学,非线性或空间电荷效应。然而,由于时间和空间尺度的限制,由于数值和实际原因,PIC方法通常在低温和高密度下表现不佳。这些限制之一是解决德拜长度的要求。在PIC仿真中无法解决Debye长度的问题通常会导致人为加热等离子体,称为栅极加热。对于诸如等离子体处理的应用,等离子体的产生速率是电子温度的敏感函数,因此,网格加热会使模拟结果完全不可靠。使用使粒子电流和电荷平滑的高阶粒子算法可以帮助消除这种不自然的加热,并允许使用PIC模拟冷的密集等离子体。我们介绍了使用高阶粒子对微波维持的等离子体进行建模的结果,并与使用标准一阶粒子的结果进行了比较。具体来说,我们将电子温度,鞘管尺寸和等离子体形成速率进行比较,以模拟使用0.05托压力的氩气和施加的2.45 GHz微波功率进行的仿真。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号