首页> 外文会议>IEEE International Conference on Plasma Sciences >Novel techniques for modeling of laser-plasma interactions in particle-in-cell codes for use in hohlraum simulations
【24h】

Novel techniques for modeling of laser-plasma interactions in particle-in-cell codes for use in hohlraum simulations

机译:用于全息模拟中的细胞内粒子内激光-等离子体相互作用建模的新技术

获取原文

摘要

Summary form only given. In the NIF hohlraum gold walls are heated by laser beams (I ~ 1015 W/cm2, λ = 1/3 μm pulse lengths ~ 1 ns), with collisional absorption believed to be the primary heating mechanism. X-rays generated by the hot ablated plasma at the gold walls are then used to implode a target in the hohlraum interior. In addition to the collisional absorption of laser energy at the walls, non-linear laser plasma interactions, such as two Plasmon decay, are believed to generate a population of supra-thermal electrons which, if present, can have a deleterious effect on target implosion. With an eye toward performing large-scale hohlraum simulations we have introduced a new capability into a hybrid particle-in-cell code which allows modeling of collisional absorption by using by a ray-tracing technique which does not require the resolution of the laser wavelength. This allows us to do relatively large scale (i.e. hohlraum-sized) simulations with a reasonable number of cells. But the non-linear effects which are believed to be the cause of hot electron generation can only be fully captured by fully kinetic simulations with good resolution of the laser wavelength. For this reason we employ a two-tiered approach to hohlraum modeling. An initially thin blowoff plasma is assumed to be present at the walls. Large-scale simulations (Δx > λ) of the collisional absorption process can be conducted using fast quasi-neutral algorithms with fluid species. From these simulations, we can observe the time evolution of the hohlraum walls and characterize the density gradients. From these results we can transition to smaller-scale highly-resolved (Δx <;<; λ) simulations using traditional kinetic PIC methods, from which we can fully model all of the non-linear laser-plasma interactions, and assess the details of the electron distribution function.
机译:仅提供摘要表格。在NIF全息金箔中,金壁由激光束(I〜1015 W / cm2,λ= 1/3μm脉冲长度〜1 ns)加热,碰撞吸收被认为是主要的加热机制。然后,由热烧蚀的等离子体在金壁上产生的X射线用于将靶标内射到白内障内部。除了在壁上碰撞吸收激光能量外,非线性激光等离子体相互作用(例如两个等离激元衰减)被认为会产生大量的超热电子,如果存在,会对目标内爆产生有害影响。着眼于执行大规模的hohlraum模拟,我们已经将新功能引入了混合单元格内粒子代码,该代码允许通过使用不需要激光波长分辨率的射线跟踪技术对碰撞吸收进行建模。这使我们可以使用合理数量的像元进行相对较大的规模(即hohlraum大小)仿真。但是,只有通过良好的激光波长分辨率的完全动力学模拟才能完全捕获被认为是热电子产生原因的非线性效应。由于这个原因,我们采用了两层方法来进行霍尔姆劳姆建模。假定壁上存在最初稀薄的吹出等离子体。碰撞吸收过程的大规模模拟(Δx>λ)可以使用带有流体种类的快速拟中性算法来进行。从这些模拟中,我们可以观察到白洞壁的时间演变并表征密度梯度。从这些结果中,我们可以使用传统的动力学PIC方法转换为小规模的高分辨率(Δx<; <;λ)模拟,从中我们可以对所有非线性激光-等离子体相互作用进行完全建模,并评估电子分布函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号