首页> 外文会议>International conference on nanochannels, microchannels and minichannels;ICNMM2009 >DIGITAL MICROFLUIDIC DEVICE USING IONIC LIQUIDS FOR ELECTRONIC HOTSPOT COOLING
【24h】

DIGITAL MICROFLUIDIC DEVICE USING IONIC LIQUIDS FOR ELECTRONIC HOTSPOT COOLING

机译:使用离子液体的电子微流控装置用于电子热冷却

获取原文
获取外文期刊封面目录资料

摘要

Thermal management in electronics become more challenging as the size of electronics decreases, yet, the heat generated from electronics still increases. To enhance cooling efficiency of conventional cooling schemes such as heat pipes, we experimentally present a use of electrowetting on dielectric (EWOD) digital microfluidic technique to force the cooling liquid medium to move to hot spot area. In this paper, firstly, two different EWOD devices were compared in their cooling performance. One is a system using one plane device and sessile droplet of cooling medium and the other is a system using two parallel planes and liquid is sandwiched in between. Secondly, two types of liquids were used and compared as the cooling medium. De-ionized (DI) water and room temperature ionic liquid (RTIL) have been investigated. RTILs are thermally stable thanks to their low vapor pressure. In addition to thermal stability, RTIL can be tailored task specifically by altering cations and anions. Different experiments were conducted to study the capacity of IL's to change the surface temperature of the hotspot generated and this was compared with that of DI water. The latter showed higher capacity to remove heat, while evaporation problem was predominant in the sandwiched setup. Three different ionic liquids, 1-butyl-3-methylimidazolium chloride or [BMIM]Cl, 1-butyl-3-methylimidazolium bis(trifiuoromethylsulfonyl)- imide or [BMIM]Ntf2, and [CMIM]FeCl_4 showed less effect on changing the surface temperature compared to water. It is due to generally lower heat conductivity and higher viscosity of ILs than water. However, RTILs showed high thermal stability by resulting in no evaporation during cooling process while water had vigorous evaporation. Nanofluid of RTIL and multiwall carbon nanotubes (MWCNT) mixture has been tested as the first step toward enhancing thermal conductivity of RTIL.
机译:随着电子器件的尺寸减小,电子器件中的热管理变得更具挑战性,但由于电子设备产生的热量仍然增加。为了提高传统冷却方案的冷却效率,例如热管,我们通过在电介质(EWOD)数字微流体技术上进行了电润湿,以迫使冷却液体介质移动到热点区域。在本文中,首先,将两个不同的EWOD器件进行了比较了它们的冷却性能。一个是使用一个平面装置的系统和冷却介质的术液滴,另一个是使用两个平行平面的系统,液体夹在两者之间。其次,使用两种类型的液体并与冷却介质进行比较。已经研究了去离子(DI)水和室温离子液体(RTIL)。由于它们的低蒸气压,RTILS热稳定。除了热稳定性之外,RTIL还可以通过改变阳离子和阴离子来专门定制任务。进行了不同的实验以研究IL的能力改变产生的热点的表面温度,并且将其与DI水进行比较。后者表现出更高的去除热量,而夹杂地点在夹层的设置中占主导地位。三种不同的离子液体,1-丁基-3-甲基咪唑鎓氯化物或[Bmim] Cl,1-丁基-3-甲基咪唑鎓双(三氟甲基磺酰基) - 酰亚胺或[Bmim] NTF2和[CMIM] FECL_4对改变表面的影响较小温度与水相比。它是由于通常较低的导热率和ILs的粘度比水更高。然而,RTILS通过在冷却过程中没有蒸发而产生高热稳定性,而水剧烈蒸发。 RTIL和多壁碳纳米管(MWCNT)混合物的纳米流体已被测试为提高RTIL导热率的第一步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号