首页> 外文会议>ASME international mechanical engineering congress and exposition;IMECE2008 >NUMERICAL MODELING OF MICROFLUIDIC TWO-PHASE ELECTROHYDRODYNAMIC INSTABILITY
【24h】

NUMERICAL MODELING OF MICROFLUIDIC TWO-PHASE ELECTROHYDRODYNAMIC INSTABILITY

机译:微流体两相电热不稳定的数值模拟

获取原文

摘要

Organic-aqueous liquid (phenol) extraction is one of many standard techniques to efficiently purify DNA directly from cells. Effective dispersion of one fluid phase in the other increases the surface area over which biological component partitioning may occur, and hence enhances DNA extraction efficiency. Electrohydrodynamic (EHD) instability can be harnessed to achieve this goal and has been experimentally demonstrated by one of the co-authors (JDZ). In this work, analysis and simulation are combined to study two-phase EHD instability. In the problem configuration, the organic (phenol) phase flows into the microchannel in parallel with and sandwiched between two aqueous streams, creating a three-layer planar geometry; the two liquid phases are immiscible. An electric field is applied to induce instability and to break the organic stream into droplets. The Taylor-Melcher leaky-dielectric model is employed to investigate this phenomenon. A linear analysis is carried out with a Chebyshev pseudo-spectral method, whereas a fully nonlinear numerical simulation is implemented using a finite volume, immersed boundary method (IBM). The results from both models compare favorably with each other. The linear analysis reveals basic instability characteristics such as kink and sausage modes. On the other hand, the nonlinear simulation predicts surface deformation in the strongly nonlinear regime pertinent to droplet formation. These numerical tools will be used to investigate the effects of the applied electric field, geometry, and convective flow rate on mixing and dispersion. The eventual objective is to maximize surface area of the organic phase under given experimental conditions for optimized DNA extraction.
机译:有机水液体(苯酚)提取是许多直接从细胞中直接纯化DNA的标准技术之一。一种流体在另一种流体中的有效分散增加了可能发生生物成分分配的表面积,因此提高了DNA提取效率。可以利用电流体动力学(EHD)的不稳定性来实现此目标,并且其中一位合著者(JDZ)已通过实验证明了这一点。在这项工作中,分析和仿真相结合以研究两阶段EHD的不稳定性。在有问题的配置中,有机(苯酚)相平行并夹在两个水流之间流入微通道,从而形成了三层平面几何形状。两种液相是不混溶的。施加电场以引起不稳定性并使有机物流破碎成液滴。泰勒-梅尔切漏电介质模型被用来研究这种现象。线性分析是使用Chebyshev伪谱方法进行的,而完全非线性的数值模拟是使用有限体积的浸入边界方法(IBM)进行的。两种模型的结果相互比较都令人满意。线性分析揭示了基本的不稳定性特征,例如扭结和香肠模式。另一方面,非线性模拟预测了与液滴形成有关的强非线性状态下的表面变形。这些数值工具将用于研究施加的电场,几何形状和对流流速对混合和分散的影响。最终目标是在给定的实验条件下最大化有机相的表面积,以优化DNA提取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号