首页> 外文会议>IMECE2008;ASME international mechanical engineering congress and exposition >NUMERICAL OPTIMIZATION OF A COGENERATING PARABOLIC SOLAR COLLECTOR RECEIVER
【24h】

NUMERICAL OPTIMIZATION OF A COGENERATING PARABOLIC SOLAR COLLECTOR RECEIVER

机译:抛物面太阳能集热器的数值优化

获取原文

摘要

The motivation for this study comes from the need for a clean, renewable energy source, which is greater now more than ever to reduce the country's dependence on fossil fuels. Cogenerating solar systems can provide heat and electricity for many industrial applications such as power generation and absorption refrigeration systems. For example, data centers that run on conventional refrigeration systems are one of the largest electricity consumers in the nation, accounting for 1.2% of the total electricity consumption in 2005. This electricity consumption, almost half of which is used to run the data center's air conditioning units, translates to $2.7 billion in electricity costs for that year. Using cogenerating solar systems for these types of applications could represent a significant amount of savings in electricity costs.The objective of this paper is to numerically optimize a receiver for a cogenerating photovoltaic and thermal parabolic solar collector that will produce both heat and electricity. The solar cogeneration system studied will convert solar energy into both heat and electricity by using a combination of photovoltaic cells, a parabolic trough thermal collector, and water as the liquid heat exchanger on the photovoltaic cells. The peak electrical efficiency of the multi-junction gallium arsenide Spcctrolab photovoltaic cells used in this study is about 32%, with the rest of the solar energy being absorbed as heat. These temperature gains in the cells can lead to a decrease in efficiency. However, in cogencraling systems, water is used as a working fluid to remove heat from the photovoltaic cells, thus aiding in increasing the electrical efficiency of the photovoltaic system as well as increasing the thermal energy gained from the solar thermal collector.The numerical analysis for this project will use Flothcrm, a CFD tool used to solve fluid and thermal problems. A single-phase water cooled square duct receiver subjected to non-uniform heating will be analyzed in Flotherm to determine the optimal parameters for the best convection heat transfer between the working fluid and the photovoltaic cells. To enhance the heat transfer between photovoltaic cells and working fluid, the inner surface of the receiver tube receiving the heat flux will be improved by adding fins to increase heat transfer and induce turbulent flow. The initial receiver design will be compared with other receivers to determine the optimal design. Results will be presented parametrically for a range of flow rates and receiver geometry.
机译:这项研究的动力来自对清洁,可再生能源的需求,如今,减少该国对矿物燃料的依赖比以往任何时候都更为重要。热电联产的太阳能系统可以为许多工业应用(例如发电和吸收式制冷系统)提供热量和电力。例如,使用常规制冷系统运行的数据中心是美国最大的用电量之一,占2005年总用电量的1.2%。这一用电量几乎有一半用于运行数据中心的空气空调装置,该年的电力成本为27亿美元。对于这些类型的应用,使用热电联产太阳能系统可以节省大量的电费。 本文的目的是在数值上优化接收器,该接收器将同时产生光伏和热抛物线太阳能集热器,该集热器将同时产生热量和电能。所研究的太阳能热电联产系统将通过结合使用光伏电池,抛物槽式集热器和水作为光伏电池上的液体热交换器,将太阳能转换为热能和电能。本研究中使用的多结砷化镓Spcctrolab光伏电池的峰值电效率约为32%,其余的太阳能被吸收为热量。电池中的这些温度升高会导致效率降低。然而,在热电联产系统中,水被用作工作流体以从光伏电池中去除热量,从而有助于提高光伏系统的电效率以及增加从太阳能集热器获得的热能。 该项目的数值分析将使用Flothcrm(一种用于解决流体和热问题的CFD工具)。将在Flotherm中对经受不均匀加热的单相水冷方管接收器进行分析,以确定工作流体与光伏电池之间最佳对流传热的最佳参数。为了增强光伏电池与工作流体之间的热传递,将通过添加散热片以增加热传递并引起湍流来改善接收热通量的接收管的内表面。初始接收器设计将与其他接收器进行比较,以确定最佳设计。结果将针对一定范围的流速和接收器几何参数显示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号