【24h】

A Reexamination of the Extraction of Material Properties using Nanoindentation

机译:使用纳米压痕技术对材料性质的提取进行重新检验

获取原文

摘要

The paper reexamines the extraction of material properties using nanoindentation for linearly elastic and elastic-plastic materials. The paper considers indentation performed using a rigid conical indenter, as follows.Linearly elastic solidsThe reduction of nanoindentation test data of elastic solids is usually processed using Sneddon's relation [1], which assumes a linearly elastic infinite half space and an infinitely sharp indenter tip. These assumptions are violated in practical indentation experiments. Since most of the research on the extraction of material properties relies heavily on numerical simulations, we used them to investigate the specimen dimensions required for it to qualify as an infinite body, and the indentation conditions for finite tip radius effect to be negligible. The outcome of this part is firstly, the definition of a "converged" 2D geometry so that additional magnification of the numerical model does not influence the load-displacement curve, and secondly, an explicit relationship between the measured load and displacement that takes into account the finite tip radius.Elastic-plastic solidsHere, the main data reduction technique was proposed by Pharr et al. [2], assuming elastic unloading of a plastic nanoindentation. We investigated the effects of finite tip radius in elastic-plastic indentations and found that the accuracy of the prediction is currently limited by the accurate determination of the projected contact area. This point will be discussed and a new experimental technique to measure the projected contact area will be proposed. The Poisson's ratio effect in elastic-plastic indentations is found to be different from the linearly elastic case. This leads to the discussion on the applicability of the correction factor (for Poisson's ratio effect) derived in linear elastic indentations, on elastic-plastic indentations. Finally, a technique to obtain an upper bound estimate of the yield stress for the indented elastic-plastic material (which is an exact estimation for non-hardening materials), will be presented.
机译:该纸张通过纳米狭窄来确定材料性能的提取,用于线性弹性和弹性塑料材料。本文考虑使用刚性锥形压痕进行的压痕,如下所述。 线性弹性固体 通常使用Sneddon的关系[1]处理弹性固体的纳米狭窄测试数据的减少,这假设线性弹性无限半空间和无限的尖锐的压头尖端。在实际缩进实验中侵犯了这些假设。由于大多数关于提取材料特性的研究大量依赖于数值模拟,因此我们使用它们来研究其作为无限体内所需的样本尺寸,并且有限尖端效应的压痕条件可忽略不计。本部分的结果首先,“融合”2D几何形状的定义,使得数值模型的额外放大率不会影响负载 - 位移曲线,其次是考虑的测量负载和位移之间的显式关系有限尖端半径。 弹塑固体 这里,Pharr等人提出了主要数据减少技术。 [2],假设弹性卸载塑料纳米凸缘。我们调查了有限尖端半径在弹性塑料缩进中的影响,发现预测的准确性目前受到预计接触面积的准确确定的限制。将讨论这一点,并提出了一种新的测量投影接触面积的实验技术。发现弹性塑料压痕中的泊松比效应与线性弹性壳体不同。这导致了关于校正因子(用于泊松比效应)的适用性,在弹性塑料凹口上衍生在线性弹性凹口。最后,将提出一种技术,用于获得缩进弹性塑料材料的屈服应力的上限估计(这是非硬化材料的精确估计)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号