首页> 外文会议>ASME summer bioengineering conference;SBC2009 >CONTROLLED CELLULAR GROWTH BY SUPERHYDROPHOBIC MICROSTRUCTURED SURFACES OF IMPLANTABLE BIODEGRADABLE POLYMER SUBSTRATE
【24h】

CONTROLLED CELLULAR GROWTH BY SUPERHYDROPHOBIC MICROSTRUCTURED SURFACES OF IMPLANTABLE BIODEGRADABLE POLYMER SUBSTRATE

机译:可渗透生物可降解聚合物基质的超疏水微结构化表面控制细胞的生长

获取原文

摘要

Biodegradable polymers with elastomeric properties have recently received attention for their potential use in the engineering of soft tissues such as blood vessel, heart valves, cartilage, tendon, and bladder, which exhibit elastic properties [1, 2]. In this paper, microfabrication technology has been applied successfully to biodegradable polymer films to encourage cell growth in designated area. This work is presented with the final goal of fabricating implantable polymer scaffolds to produce blood capillaries in controlled manner spatially by using the concept of superhydrophobic surfaces.There are several methods to control cell growth including patterned chemical cues on the surface. Although successful in patterned cell growth, chemical cues are not suitable for implantation. While the concept of "contact guidance" uses physical cues to guide cell growth [3-5], most of the research has been done on either conventional microelectronics material such as silicon and metals or non-implantable polymers such as PDMS. Besides the materials, the guiding microstructures were limited with mainly 2-D groove patterns.Adhesion and proliferation of cells are main keys for successful cell guidance, however, there are many factors affecting to cell adhesion and proliferation. Wettability of surface is one of the major factors and it is known that cell adhesion can be achieved most successfully in the contact angle window 50° - 90°. In addition, it is well studied that surface roughness can alter surface wettability ofchemically homogeneous surface [6, 7]. Figure 1 illustrates the roughness effect of surface wettability. So-called 'superhydrophobic' or 'superhydrophilic' surfaces can be achieved by introducing a micro-or nano-scale roughness to the surface. Thus, we have introduced microscale roughness to the biodegradable polymer film surface and achieved superhydrophobic surfaces where the cell adhesion is preferentially much lower than on smooth scaffold surfaces.
机译:具有弹性的可生物降解聚合物由于其在软组织工程中的潜在用途而受到了关注,这些软组织例如血管,心脏瓣膜,软骨,腱和膀胱具有弹性[1,2]。在本文中,微细加工技术已成功地应用于可生物降解的聚合物薄膜,以鼓励细胞在指定区域内生长。提出这项工作的最终目的是通过使用超疏水性表面的概念来制造可植入的聚合物支架,从而以受控的方式在空间上产生血液毛细血管。 有几种控制细胞生长的方法,包括在表面上形成图案的化学提示。尽管成功完成了模式化细胞生长,但化学提示并不适合植入。尽管“接触引导”的概念使用物理线索来指导细胞生长[3-5],但大多数研究还是针对常规的微电子材料(如硅和金属)或不可植入的聚合物(如PDMS)进行的。除材料外,导向微结构主要限于二维凹槽图案。 细胞的粘附和增殖是成功进行细胞指导的主要关键,但是,有许多因素会影响细胞的粘附和增殖。表面的润湿性是主要因素之一,并且众所周知,在50°-90°的接触角窗口中,可以最成功地实现细胞粘附。另外,对表面粗糙度可以改变表面的润湿性进行了充分的研究。 化学均匀的表面[6,7]。图1说明了表面润湿性的粗糙度影响。所谓的“超疏水”或“超亲水”表面可以通过在表面上引入微米或纳米级的粗糙度来实现。因此,我们已经将微尺度粗糙度引入到可生物降解的聚合物膜表面,并获得了超疏水性表面,其中细胞粘附优先地比在光滑支架表面上低得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号