首页> 外文会议>Computational Intelligence in Robotics and Automation (CIRA), 2009 >Evolving multirobot excavation controllers and choice of platforms using an artificial neural tissue paradigm
【24h】

Evolving multirobot excavation controllers and choice of platforms using an artificial neural tissue paradigm

机译:使用人工神经组织范例的不断发展的多机器人挖掘控制器和平台选择

获取原文

摘要

Autonomous robotic excavation has often been limited to a single robotic platform using a specified excavation vehicle. This paper presents a novel method for developing scalable controllers for use in multirobot scenarios and that do not require human defined operations scripts nor extensive modeling of the kinematics and dynamics of the excavation vehicles. Furthermore, the control system does not require specifying an excavation vehicle type such as a bulldozer, front-loader or bucket-wheel and it can evolve to select for an appropriate choice of excavation vehicles to successfully complete a task. The ¿artificial neural tissue¿ (ANT) architecture is used as a control system for autonomous multirobot excavation and clearing tasks. This control architecture combines a variable-topology neural-network structure with a coarse-coding strategy that permits specialized areas to develop in the tissue. Training is done in a low-fidelity grid world simulation environment and where a single global fitness function and a set of allowable basis behaviors need be specified. This approach is found to provide improved training performance over fixed-topology neural networks and can be easily ported onto different robot platforms. Aspects of the controller functionality have been tested using high fidelity dynamics simulation and in hardware. An evolutionary training process discovers novel decentralized methods of cooperation employing aggregation behaviors (via synchronized movements). These aggregation behaviors are found to improve controller scalability (with increasing robot density) and better handle robot interference (antagonism) that reduces the overall efficiency of the group.
机译:自主机器人挖掘经常限于使用指定的挖掘车的单个机器人平台。本文提出了一种新的方法,用于开发可扩展的控制器以用于多机器人场景,并且不需要人工定义的操作脚本,也无需对挖掘车辆的运动学和动力学进行广泛的建模。此外,该控制系统不需要指定诸如推土机,前装载器或斗轮之类的挖掘车辆类型,并且它可以演变为选择合适的挖掘车辆来成功完成任务。 Ââ‚â,人工神经组织ÂÂ(ANT)体系结构被用作自主多机器人挖掘和清理任务的控制系统。这种控制体系结构将可变拓扑神经网络结构与粗糙编码策略结合在一起,可以使组织中的特定区域得以发展。训练是在低保真网格世界模拟环境中进行的,并且需要指定单个全局适应度函数和一组允许的基础行为。发现这种方法可通过固定拓扑神经网络提供改进的训练性能,并且可以轻松地移植到不同的机器人平台上。控制器功能的各个方面已使用高逼真度动态仿真和在硬件中进行了测试。进化训练过程发现了采用聚合行为(通过同步运动)的新型分散式合作方法。发现这些聚集行为可以提高控制器的可伸缩性(随着机器人密度的增加)并更好地处理机器人的干扰(拮抗作用),从而降低团队的整体效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号