【24h】

MICROSTRUCTURE-SENSITIVE MODELING OF HIGH CYCLE FATIGUE

机译:高周疲劳的微观结构敏感性建模

获取原文

摘要

We explore microstructure-sensitive computational methods for predicting variability of low cycle fatigue (LCF) and high cycle fatigue (HCF) processes in metallic polycrystals to support design of fatigue resistant alloys.We outline a philosophy of establishing relations between remote loading conditions and microstructure-scale plasticity/crack behavior as a function of stress amplitude,stress state and microstructure,featuring calibration of mean experimental responses for known microstructures that bound the range of virtual (digital) microstructures.Based on bottom-up and top-down multiscale computational modeling,influences of microstructure-scale heterogeneities are characterized in terms of elastic shakedown,ratcheting,reversed cyclic microplastic strain conditions,and discuss HCF fatigue thresholds in terms of percolation limits for microplasticity in polycrystals and two phase microstructures.Variability of HCF behavior associated with intrinsic stochastic microstructure is distinguished from fatigue crack nucleation and microstructurally small crack growth at extrinsic features such as non-metallic inclusions.Effects of process history and resulting residual stresses are considered in certain cases of subsurface crack formation.The need to characterize extreme value correlations of microstructure attributes coupled to the local driving force (i.e.,features) for HCF crack formation is outlined,along with a strategy involving a set of Fatigue Indicator Parameters (FIPs) relevant to different mechanisms of crack formation.We describe current work involving potency of non-metallic inclusions in carburized and shot-peened gear steels,as well as microstructure-sensitive design of microstructures for HCF resistance.
机译:我们探索了微结构敏感的计算方法,以预测金属多晶中的低循环疲劳(LCF)和高循环疲劳(HCF)过程的变异性,以支持抗疲劳合金的设计。规模塑性/裂纹行为随应力幅度,应力状态和微观结构的变化而变化,从而为限制虚拟(数字)微观结构范围的已知微观结构提供了平均实验响应的校准。基于自下而上和自上而下的多尺度计算模型,微观结构尺度异质性的影响通过弹性振动,棘轮,反向循环微塑性应变条件来表征,并根据多晶和两相微结构的微塑性渗透极限来讨论HCF疲劳阈值。是迪受到疲劳裂纹形核和非金属夹杂物等外部特征的微结构小裂纹扩展的影响。在地下裂纹形成的某些情况下,考虑了工艺历史和所产生的残余应力的影响。概述了HCF裂纹形成的局部驱动力(即特征),以及涉及与裂纹形成的不同机理相关的一组疲劳指标参数(FIP)的策略。我们描述了当前涉及非金属夹杂物效力的工作。渗碳和喷丸处理的齿轮钢,以及对HCF抵抗力的微结构敏感结构设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号