首页> 外文会议>第21届国际摄影测量与遥感大会(ISPRS 2008)论文集 >THE FUTURE OF VIRTUAL GLOBES THE INTERACTIVE RAY-TRACED DIGITAL EARTH
【24h】

THE FUTURE OF VIRTUAL GLOBES THE INTERACTIVE RAY-TRACED DIGITAL EARTH

机译:虚拟地球的未来交互式射线追踪数字地球

获取原文

摘要

In the past ten years graphics cards have been drastically improved. Being pushed by the multi-billion dollar computer game industry the capabilities and performance of graphics processors (GPUs) increased to support more and more geometric complexity and visual beauty in games. Today, virtual globes use similar techniques known from 3d-game programming, even though virtual globes use much more image data -which can be in the Petabyte range. Despite these architectural differences virtual globes are -like games -relying on a fast graphics card to maintain a high frame rate of 60 and more images per second at a high screen resolution. In the past decade there has also been an increase in CPU performance. With the advent of multi-core CPUs and algorithmic improvements it is now possible to reach acceptable interactive frame rates in ray-tracing using high-end multi-core PCs.Ray-tracing calculates an image by simulating the correct transport of light, obeying optical laws and energy conservation. Therefore ray-tracing allows for a substantial quality increase by supporting correct shadow calculation, depth-of-field, caustics, reflections, refractions, and so on. Global illumination adds much more realism to images. The problem of ray tracing is that a lot of computing power is required to create an image, especially for testing large amounts of intersections of light rays with the worlds geometry. There are ways to reduce computing power by using spatial acceleration structures. In the recent years those algorithms have been improved, so that interactive ray-tracing is now feasible. This paper shows how an interactively ray-traced virtual globe works. It shows how data preparation can be done, including acceleration structures for quick identification of spatial regions. A first implementation of such a physically correct digital earth is shown. Some possibilities with this system are presented and how the future of virtual globes looks like when this technology evolves.
机译:在过去的十年中,显卡得到了极大的改进。在价值数十亿美元的计算机游戏产业的推动下,图形处理器(GPU)的功能和性能得到了提高,以支持越来越多的几何复杂性和游戏中的视觉美感。如今,虚拟地球仪使用3D游戏编程中已知的类似技术,即使虚拟地球仪使用更多的图像数据(可能在PB范围内)也是如此。尽管存在这些架构上的差异,虚拟地球仪还是像游戏一样,还是依靠快速的图形卡在高屏幕分辨率下保持每秒60帧的高帧速率和更多图像。在过去的十年中,CPU性能也有所提高。随着多核CPU的出现和算法的改进,现在可以使用高端多核PC在光线跟踪中达到可接受的交互式帧速率。光线跟踪通过模拟正确的光传输来计算图像,并遵循光学法律和节能。因此,光线跟踪通过支持正确的阴影计算,景深,焦散,反射,折射等,可以显着提高质量。全局照明为图像增加了更多的真实感。光线追踪的问题在于,创建图像需要大量的计算能力,尤其是对于测试大量光线与世界几何图形的交点而言。有一些方法可以通过使用空间加速结构来降低计算能力。近年来,这些算法已得到改进,因此交互式光线跟踪现在是可行的。本文展示了交互式射线追踪的虚拟地球仪的工作原理。它显示了如何完成数据准备,包括用于快速识别空间区域的加速结构。示出了这种物理上正确的数字地球的第一实施方式。本文介绍了该系统的一些可能性,以及随着技术的发展虚拟地球仪的未来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号