首页> 外文会议>International conference on advances in nuclear power plants;ICAPP 2008 >PRESSURE LOSS COEFFICIENT EVALUATION BASED ON CFD ANALYSIS FOR SIMPLE GEOMETRIES AND PWR REACTOR VESSEL WITHOUT GEOMETRY SIMPLIFICATION
【24h】

PRESSURE LOSS COEFFICIENT EVALUATION BASED ON CFD ANALYSIS FOR SIMPLE GEOMETRIES AND PWR REACTOR VESSEL WITHOUT GEOMETRY SIMPLIFICATION

机译:基于CFD分析的简单几何和压水堆反应釜压力损失系数评估

获取原文

摘要

Nuclear vendors and utilities perform lots of simulations and analyses in order to ensure the safe operation of nuclear power plants (NPPs). In general, the simulations are carried out using vendor-specific design codes and best-estimate system analysis codes and most of them were developed based on 1-dimensional lumped parameter models. These thermal-hydraulic system analysis codes require user input for pressure loss coefficient, k-factor, since they numerically solve Euler-equation. In spite of its high impact on the safety analysis results, there has not been good validation method for the selection of loss coefficient. During the past decade, however, computers, parallel computation methods, and 3-dimensional computational fluid dynamics (CFD) codes have been dramatically enhanced. It is believed to be beneficial to take advantage of advanced commercial CFD codes in safety analysis and design of NPPs. The present work aims to validate pressure loss coefficient evaluation for simple geometries and k-factor calculation for PWR based on CFD. The performances of standard k-s model, RNG k-ε model, Reynolds stress model (RSM) on the simulation of pressure drop for simple geometry such as, orifice, sudden-expansion, and sudden-contraction are evaluated. The calculated value was compared with pressure loss coefficient in handbook of hydraulic resistance. Then the present work carried out analysis for flow distribution in downcomer and lower plenum of Korean standard nuclear power plants (KSNPs) using STAR-CD. The lower plenum geometry of a PWR is very complicated since there are so many reactor internals, which hinders in CFD analysis for real reactor geometry up to now. The present work takes advantage of 3D CAD model so that real geometry of lower plenum is used. The results give a clear figure about flow fields in the reactor vessel, which is one of major safety concerns. The calculated pressure drop across downcomer and lower plenum appears to be in good agreement with the data in engineering calculation note. The present 3-dimensional calculation domain was split into sub-domains such that each domain corresponds to a node of the KSNP for an event analysis using RELAP5/MOD3. Volume average pressure of each sub-domain, area and area average velocity at each interface between sub-domains was calculated. Based on these information k-factors were evaluated for each junction.
机译:核供应商和公用事业公司进行了大量的模拟和分析,以确保核电厂(NPP)的安全运行。通常,使用供应商特定的设计代码和最佳估计的系统分析代码进行仿真,并且大多数仿真是基于一维集总参数模型开发的。这些热工液压系统分析代码需要用户输入压力损失系数(k因子),因为它们在数值上求解欧拉方程。尽管它对安全性分析结果有很大的影响,但是对于损耗系数的选择还没有很好的验证方法。但是,在过去的十年中,计算机,并行计算方法和3D计算流体动力学(CFD)代码得到了显着增强。据信在核电厂的安全分析和设计中利用先进的商业差价合约代码是有益的。本工作旨在验证基于CFD的压水堆简单几何形状的压力损失系数评估和k因子计算。评估了标准k-s模型,RNGk-ε模型,雷诺应力模型(RSM)在模拟诸如孔口,突然膨胀和突然收缩等简单几何形状的压降时的性能。将计算值与水力阻力手册中的压力损失系数进行比较。然后,本研究利用STAR-CD对韩国标准核电站(KSNP)的下,下腔室中的流量分布进行了分析。由于反应堆内部零件太多,因此PWR的下部气室几何结构非常复杂,这阻碍了迄今为止CFD分析实际反应堆几何形状的工作。本工作利用3D CAD模型的优势,因此可以使用下增压室的实际几何形状。结果清楚地显示了反应堆容器中的流场,这是主要的安全隐患之一。计算得出的降液管和下增压室之间的压降与工程计算说明中的数据非常吻合。当前的3维计算域被划分为子域,以便每个域都对应于KSNP的一个节点,以便使用RELAP5 / MOD3进行事件分析。计算每个子域的体积平均压力,面积和子域之间每个界面的面积平均速度。根据这些信息,对每个结点评估k因子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号