首页> 外文会议>International Mechanical Engineering Congress and Exposition 2007 >EXACT SOLUTION OF TIME HISTORY RESPONSE FOR DYNAMIC SYSTEMS WITH ARBITRARY VISCOUS DAMPING USING COMPLEX MODAL ANALYSIS
【24h】

EXACT SOLUTION OF TIME HISTORY RESPONSE FOR DYNAMIC SYSTEMS WITH ARBITRARY VISCOUS DAMPING USING COMPLEX MODAL ANALYSIS

机译:基于粘模分析的任意粘性阻尼动力系统时间历史响应的精确解

获取原文

摘要

A solution method for general, non-proportional damping time history response for piecewise linear loading is generalized to exact solutions which include piecewise quadratic loading. Comparisons are made to Trapezoidal and Simpson's quadrature rules for approximating the time integral of the weighted generalized forcing function in the exact solution to the decoupled modal equations arising from state-space modal analysis of linear dynamic systems. Closed-form expressions for the weighting parameters in the quadrature formulas in terms of time-step size and complex eigenvalues are derived. The solution is obtained step-by-step from update formulas derived from the piecewise linear and quadratic interpolatory quadrature rules starting from the initial condition. An examination of error estimates for the different force interpolation methods shows convergence rates depend explicitly on the amount of damping in the system as measured by the real-part of the complex eigenvalues of the state-space modal equations and time-step size. Numerical results for a system with general, non-proportional damping, and driven by a continuous loading shows that for systems with light damping, update formulas for standard Trapezoidal and Simpson's rule integration have comparable accuracy to the weighted piecewise linear and quadratic force interpolation update formulas, while for heavy damping, the update formulas from the weighted force interpolation quadrature rules are more accurate. Using a simple model representing a stiff system with general damping, we show that a two-step modal analysis using real-valued modal reduction fol- lowed by state-space modal analysis is shown to be an effective approach for rejecting spurious modes in the spatial discretization of a continuous system.
机译:分段线性载荷的一般非比例阻尼时程响应的求解方法被推广到包括分段二次载荷的精确解。比较了梯形和辛普森的正交规则,以便在线性动力系统的状态空间模态分析产生的解耦模态方程的精确解中,近似加权广义强迫函数的时间积分。推导了正交公式中权重参数在时间步长和复杂特征值方面的闭式表达式。该解决方案是根据从初始条件开始的分段线性和二次内插正交规则的更新公式逐步获得的。对不同力插值方法的误差估计的检查表明,收敛速度明显取决于系统中的阻尼量,该阻尼量由状态空间模态方程的复特征值的实部和时间步长来度量。具有一般,非比例阻尼且受连续载荷驱动的系统的数值结果表明,对于具有轻阻尼的系统,标准梯形和辛普森规则积分的更新公式的精度与加权分段线性和二次力插值更新公式相当,而对于大阻尼,来自加权插值正交规则的更新公式更准确。使用代表具有一般阻尼的刚性系统的简单模型,我们表明,使用实值模态归约法紧接着状态空间模态分析的两步模态分析被证明是一种拒绝空间中杂散模态的有效方法。连续系统的离散化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号