首页> 外文会议>International Mechanical Engineering Congress and Exposition 2007 >ATOMISTIC MECHANISM OF ION BEAM DEPOSITION INDUCED CURVATURE FORMATION IN THIN-FILMS
【24h】

ATOMISTIC MECHANISM OF ION BEAM DEPOSITION INDUCED CURVATURE FORMATION IN THIN-FILMS

机译:薄膜中离子束沉积诱导弯曲形成的原子机理

获取原文

摘要

Molecular dynamics (MD) simulations are performed to study the stress generation mechanisms in cantilever graphene sheets impacted by energetic carbon neutrals. The carbon-carbon interactions are described by the Tersoff-Brenner potential [1]. The MD simulations show that the free-end deflection of the graphene sheets is strongly dependent on the kinetic energy of the incident ions. At low incident energy ( 《 10eV), the free end bends towards to the side on which ions are deposited (upward deflection); at high incident energy, the free end bends away from the side on which the ions are deposited (downward deflection). The downward deflection reaches its maximum at around 50 eV, beyond which the downward deflection decreases with increasing incident energies. In addition, the evolution of the free-end deflection in terms of the number of deposited atoms is also dependent on the kinetic energy of the incident ions. These numerical observations suggest that intrinsic stress of different levels in the graphene sheets is generated. A close examination of the microstructures of the grown films indicates that the generated stress can be attributed to a competing mechanism of the production and annihilation of vacancy-like and interstitial-like defects in the films.
机译:进行分子动力学(MD)模拟以研究受高能碳中性影响的悬臂石墨烯片中的应力产生机理。碳-碳相互作用用Tersoff-Brenner势[1]描述。 MD模拟表明,石墨烯片的自由端偏转强烈地取决于入射离子的动能。在低入射能量(《 10eV)下,自由端朝着沉积离子的那一侧弯曲(向上偏转)。在高入射能量下,自由端弯曲离开沉积离子的一侧(向下偏转)。向下偏转在大约50 eV处达到最大值,超过此最大值,向下偏转将随着入射能量的增加而减小。此外,就沉积原子数而言,自由端偏转的演变也取决于入射离子的动能。这些数值结果表明,在石墨烯片中产生了不同水平的固有应力。对生长的薄膜的微观结构的仔细检查表明,所产生的应力可归因于薄膜中空位样和间隙样缺陷的产生和an灭的竞争机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号