首页> 外文会议>ASME(American Society of Mechanical Engineers) Pressure Vessels and Piping Conference 2007 >PARTITIONED CYCLIC FATIGUE DAMAGE EVOLUTION MODEL FOR PB-FREE SOLDER MATERIALS
【24h】

PARTITIONED CYCLIC FATIGUE DAMAGE EVOLUTION MODEL FOR PB-FREE SOLDER MATERIALS

机译:无铅焊锡材料的循环疲劳损伤演化模型

获取原文

摘要

This study presents an approach to predict the degree of material degradation and the resulting changes in constitutive properties during cyclic loading in viscoplastic materials in micro-scale applications. The objective in the modeling approach is to address the initiation and growth of distributed micro-damage, in the form of micro-cracks and micro-voids, as a result of cyclic, plastic and creep deformations of material. This study extends an existing micromechanics-based approach, developed for unified viscoplastic models [Wen, et al, 2001], which uses dislocation mechanics to predict damage due to distributed micro-scale fatigue crack initiation [Mura and Nakasone, 1990]. In the present study, the approach is extended to a partitioned viscoplastic framework, because the micro-scale mechanisms of deformation and damage are different for plastic and creep deformation. In this approach, the model constants for estimating cyclic damage evolution are allowed to be different for creep and plastic deformations. A partitioned viscoplastic constitutive model is coupled with an energy partitioning (E-P) damage model [Oyan and Dasgupta, 1992] to assess fatigue damage evolution due to cyclic elastic, plastic and creep deformations. Wen's damage evolution model is extended to include damage evolution due to both plastic and creep deformations. The resulting progressive degradation of elastic, plastic and creep constitutive properties are continuously assessed and updated. The approach is implemented on a viscoplastic Pb-free solder. Dominant deformation modes in this material are dislocation slip for plasticity and diffusion-assisted dislocation climb/glide for creep. The material's behavior shows a good correlation with the proposed damage evolution model. Damage evolution constants for plastic and creep deformation were obtained for this Pb-free solder from load drop data collected from the mechanical cycling experiments at different temperatures. The amount of cyclic damage is evaluated and compared with experiment.
机译:这项研究提出了一种方法,可以预测在微观应用中粘塑性材料循环加载过程中材料的降解程度以及本构性质的变化。建模方法的目的是解决由于材料的循环,塑性和蠕变变形而导致的以微裂纹和微孔形式出现的分布式微损伤的引发和增长。这项研究扩展了现有的基于微力学的方法,该方法是为统一的粘塑性模型开发的[Wen等,2001],该方法使用位错力学来预测由于分布的微观疲劳裂纹萌生而造成的破坏[Mura和Nakasone,1990]。在本研究中,该方法扩展到了分区的粘塑性框架,因为塑性和蠕变变形的微观尺度的变形和损伤机理是不同的。在这种方法中,用于估计循环损伤演化的模型常数对于蠕变和塑性变形是不同的。分区的粘塑性本构模型与能量分区(E-P)损伤模型结合[Oyan和Dasgupta,1992],以评估由于循环弹性,塑性和蠕变变形而引起的疲劳损伤演化。 Wen的损伤演化模型扩展到包括塑性变形和蠕变变形引起的损伤演化。不断评估并更新由此导致的弹性,塑性和蠕变本构性质的逐步退化。该方法在粘塑性无铅焊料上实施。这种材料的主要变形模式是位错滑移,以实现塑性;扩散辅助位错爬升/滑移,以实现蠕变。材料的行为与提出的损伤演化模型显示出良好的相关性。该无铅焊料的塑性破坏和蠕变变形的破坏演化常数是从在不同温度下的机械循环实验收集的负荷下降数据得出的。评估周期性损伤的量并将其与实验进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号