首页> 外文会议>International Symposium on CIGRE/IEEE PES, 2005 >What measurements in space weather are needed for predictingspacecraft charging?
【24h】

What measurements in space weather are needed for predictingspacecraft charging?

机译:预测太空气象需要什么测量航天器充电?

获取原文

摘要

Summary form only given. By solving the current balance equations,the author obtains solutions for various space plasma conditions underwhich spacecraft surface charging may occur. When the space plasma isquiet, the photoemission from surfaces in sunlight often exceeds theambient plasma current collected by the surfaces. In that situation,positive charging likely occurs but the charging level must be low (afew volts). Without sunlight or when the space plasma becomes energetic,negative charging is more likely to occur. A Maxwellian distribution isoften a good approximation for modeling the space plasma at equilibrium.Without sunlight, the current balance equation in the Maxwellian modelgives a unique solution: the plasma temperature. When the plasmatemperature exceeds a critical value, negative charging occurs. Thecritical temperature depends on the surface property. The authorpresents a table of critical temperatures for common surface materials.In a Maxwellian plasma without sunlight, the plasma temperature is theonly parameter needed for predicting charging. During magneticdisturbances, energetic plasma may arrive and, as a result, thedistribution sometimes resembles a double Maxwellian. In such asituation, the interplay between the two Maxwellian components is oftencrucial in determining charging. While the low energy (few hundred eV)Maxwellian component may favour outgoing secondary electrons, the highenergy (keVs) component does not. The author presents examples showingthat when the first Maxwellian density (and the average plasma density)is decreasing, negative charging appears not only rapidly but also tohigh levels during eclipse. In such a situation, measurements of theaverage plasma density or temperature are insufficient for predictingcharging. Instead, one needs to measure the Maxwellian densities andtemperatures. When the space plasma distribution cannot be fitted wellwith a single and double Maxwellian, one can still use the distributionfor spacecraft charging calculation. Although one can input into acomputer model any given distributions as they appear and outputnumerical results, the author advocates decomposing the distributioninto a sum of several Maxwellians in a Fourier fashion. Measurements ofthe several Maxwellian densities and temperatures would be more useful.The interplay between the various Maxwellian components gives deeperphysical insight, better prediction of the evolution of the componentsand hence better prediction of spacecraft surface charging
机译:仅提供摘要表格。通过求解电流平衡方程, 作者获得了在各种空间等离子体条件下的解决方案 哪些航天器表面可能会发生充电。当空间等离子体是 安静,阳光下表面的光发射通常超过 表面收集的环境等离子体电流。在那种情况下, 可能会发生正充电,但充电水平必须低(a 几伏)。没有阳光或当空间等离子体充满能量时, 负电荷更有可能发生。麦克斯韦分布是 通常是对处于平衡状态的空间等离子体进行建模的一个很好的近似值。 没有阳光,麦克斯韦模型中的电流平衡方程 给出了一个独特的解决方案:等离子温度。等离子时 如果温度超过临界值,则会产生负电荷。这 临界温度取决于表面性质。作者 给出了常见表面材料的临界温度表。 在没有阳光的麦克斯韦等离子体中,等离子体温度为 仅预测充电所需的参数。磁期间 干扰,高能等离子体可能会到达,因此, 分布有时类似于双Maxwellian。在这样的 在这种情况下,两个麦克斯韦分量之间的相互作用通常是 在确定收费方面至关重要。而低能量(几百eV) 麦克斯韦分量可能偏向传出的二次电子 能量(keVs)分量没有。作者提供了一些例子,显示 当第一麦克斯韦密度(和平均血浆密度) 在减少,负电荷不仅迅速出现,而且 日食时水平很高。在这种情况下, 平均血浆密度或温度不足以预测 收费。相反,需要测量麦克斯韦密度和 温度。当空间等离子体分布不能很好地拟合时 如果使用单双Maxwellian,则仍然可以使用分布 用于航天器的充电计算。虽然可以输入 计算机模拟任何给定的分布,当它们出现并输出时 数值结果,作者主张分解分布 以傅立叶的方式分解成几个麦克斯韦氏主义者的总和的测量 几个麦克斯韦密度和温度将更有用。 各种麦克斯韦成分之间的相互作用提供了更深层次的信息 物理洞察力,更好地预测组件的演变 因此可以更好地预测航天器的表面电荷

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号