首页> 外文会议>Detection and Remediation Technologies for Mines and Minelike Targets VIII >Volumetric Signal Processing Hardware Acceleration For Mine Detection
【24h】

Volumetric Signal Processing Hardware Acceleration For Mine Detection

机译:地雷探测的体积信号处理硬件加速

获取原文

摘要

Digital signal processing algorithms for the detection of landmines using ground penetrating radar are computationally intensive if not due to algorithmic complexity, then due to the vast quantity of data which must be processed in realtime. As a result of this, surface area coverage rates using general purpose computers are limited without an additional investment in multiple central processing units and the parallelization of the executable. This results in an excess of unused resources with the associated cost both in terms of monetary cost and power consumption. The increase in power consumption alone also causes an increase cost in cooling and the requirement for larger prime power and/or reduced battery life. Field programmable gate array (FPGA) hardware devices are reconfigurable in seconds and they can be reprogrammed in the field using relatively standard equipment such as a laptop computer. A secondary advantage of re-configurable dedicated hardware is the flexibility it affords in terms of the specific signal processing algorithm being executed on the re-configurable computing device. As an example of this type of hardware optimization of an algorithm, this paper describes an implementation of volumetric (3D) template matching using re-configurable digital hardware, namely an FPGA. This is a viable alternative for the acceleration of digital signal processing and directly results in an increase in mine detection area coverage rates for a relatively small investment. This also results in a more compact, fieldable real-time implementations of landmine detection algorithms and a common mine detector whose hardware is standard but whose optimized algorithms are downloaded into the FPGA for the particular minefield to be cleared. In this paper we give a quantitative analysis of the increase in execution speed achieved by performing cross correlation of large template sizes on large data.
机译:如果不是由于算法复杂性,而是由于必须实时处理的大量数据,那么用于使用探地雷达探测地雷的数字信号处理算法的计算量很大。结果,使用通用计算机的表面积覆盖率受到限制,而无需在多个中央处理单元和可执行程序的并行化方面进行额外投资。在货币成本和功率消耗方面,这导致未使用资源的过多以及相关的成本。单单功率消耗的增加还导致冷却成本的增加以及对更大的主功率的需求和/或电池寿命的减少。现场可编程门阵列(FPGA)硬件设备可在几秒钟内重新配置,并且可以使用诸如笔记本电脑之类的相对标准的设备在现场对它们进行重新编程。可重新配置的专用硬件的第二个优点是它提供了在可重新配置的计算设备上执行特定信号处理算法方面的灵活性。作为这种算法的硬件优化类型的示例,本文描述了使用可重配置的数字硬件(即FPGA)实现体积(3D)模板匹配的实现。这是加速数字信号处理的可行替代方案,并以相对较小的投资直接导致了地雷探测区域覆盖率的提高。这还导致了地雷探测算法和通用地雷探测器的更紧凑,更现场的实时实现,该地雷探测器的硬件是标准的,但其优化算法已下载到FPGA中以清除特定的雷场。在本文中,我们对通过在大型数据上执行大型模板大小的互相关而实现的执行速度的提高进行了定量分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号