首页> 外文会议>Metrology, Inspection, and Process Control for Microlithography XVI >Advanced Process Control of Overlay with Optimal Sampling
【24h】

Advanced Process Control of Overlay with Optimal Sampling

机译:最佳采样的高级过程控制

获取原文

摘要

This paper evaluates sampling plans for overlay metrology in the context of Advanced Process Control (APC). The relationship between APC opportunity (the maximum benefit achievable via APC) and correctable accuracy is investigated. The tradeoff between spatial and temporal sampling density is considered as well. This tradeoff expresses the relationship between temporal sampling needed to realize APC benefit and spatial sampling needed to achieve a level of total overlay error. The approach is in 3 phases. First, overlay correctables are derived based on a 10-field and 4-field sampling plan. Second, a model of the process variability associated with each plan is developed. Finally, the model is used to simulate APC benefit as a function of temporal sampling. The question explored is whether different sampling plans result in different process variability and thus different APC opportunity. Two features of process variability impact APC performance. One is the proportion of process disturbance and noise that make up the total measured variability. The other is the frequency distribution of the process disturbance. We find that the spatial sampling plan impacts both the proportion of process disturbance in the measured variability and the frequency distribution of the disturbance. As a result of a smaller magnitude and lower frequency disturbance in the 10-field plan, APC performance with this plan is substantially better than with the 4-field plan. Over a realistic range of temporal sampling, APC of correctables derived from the 10-field sample plan result in a 20 to 25% improvement over the baseline of no control on 4-field based correctables. When APC is applied to 4-field correctables, only about 8 to 10% improvement is achieved.
机译:本文在高级过程控制(APC)的背景下评估了覆盖计量学的采样计划。研究了APC机会(可通过APC获得的最大收益)与可纠正的准确性之间的关系。还应考虑在空间和时间采样密度之间进行权衡。这种权衡表示实现APC优势所需的时间采样与实现一定水平的总覆盖误差所需的空间采样之间的关系。该方法分为三个阶段。首先,基于10场和4场采样计划得出叠加可校正量。其次,建立了与每个计划相关的过程可变性的模型。最后,该模型用于模拟APC收益作为时间采样的函数。探索的问题是,不同的采样计划是否会导致不同的过程可变性,从而导致不同的APC机会。过程可变性的两个特征影响APC性能。一个是过程干扰和噪声所占的比例,它们构成了总的测量变异性。另一个是过程干扰的频率分布。我们发现,空间采样计划会影响过程扰动在​​测得的变异性中所占的比例以及扰动的频率分布。由于10场计划的幅度较小且频率干扰较低,因此该计划的APC性能明显好于4场计划。在实际的临时采样范围内,从10场抽样计划得出的可校正物质的APC会比对基于4字段的可校正物质没有控制的基准提高20%到25%。当将APC应用于4场可校正项时,只能实现约8%到10%的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号