首页> 外文会议>ASME (American Society of Mechanical Engineers) Turbo Expo 2002: Heat Transfer Manufacturing Materials and Metallurgy >SPATIALLY-RESOLVED HEAT TRANSFER AND FLOW STRUCTURE IN A RECTANGULAR CHANNEL WITH 45° ANGLED RIB TURBULATORS
【24h】

SPATIALLY-RESOLVED HEAT TRANSFER AND FLOW STRUCTURE IN A RECTANGULAR CHANNEL WITH 45° ANGLED RIB TURBULATORS

机译:带有45°角肋涡轮的矩形通道中的空间分辨传热和流动结构

获取原文

摘要

Spatially-resolved Nusselt numbers and flow structure are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45° with perpendicular orientations on two opposite surfaces. The flow structure results include time-averaged distributions of streamwise velocity and total pressure, surveyed over flow cross-sectional planes, as well as flow visualization images and friction factors. Results are given at different Reynolds numbers based on channel height from 270 to 90,000. The ratio of rib height to hydraulic diameter is .078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25 percent of the channel cross-sectional area. Spatially-resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer re-attachment have pronounced influences on local surface heat transfer behavior. Also important are intense, highly unsteady secondary flows and vortex pairs, which increase secondary advection and turbulent transport over the entire channel cross-section. The resulting augmented local and spatially-averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) generally increase on the rib tops as Reynolds number increases. Nusselt number ratios decrease on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. Globally-averaged Nusselt number ratios vary from 3.36 to 2.82 as Reynolds number increases from 10,000 to 90,000. Thermal performance parameters also decrease somewhat as Reynolds number increases over this range, with values in approximate agreement with, or slightly higher than 60° continuous rib data measured by other investigators in a square channel.
机译:对于长宽比为4的固定通道和成角度的肋湍流器,在两个相对的表面上以45°倾斜且垂直的方向呈现了空间分辨的Nusselt数和流动结构。流动结构的结果包括在流动横截面上进行调查的沿流速度和总压力的时间平均分布,以及流动可视化图像和摩擦系数。根据从270到90,000的通道高度,在不同的雷诺数下给出结果。肋的高度与水力直径之比为.078,肋的螺距与高度之比为10,肋所提供的阻塞率为通道横截面面积的25%。在肋骨湍流器的顶部,空间分辨的局部Nusselt数最高,在肋骨之间的平面上幅度较小,其中流动分离和剪切层重新附着的区域对局部表面传热行为有明显影响。同样重要的是强烈的,高度不稳定的二次流和涡流对,它们会增加整个通道横截面上的二次对流和湍流传输。随着雷诺数的增加,所得到的局部和空间平均的努塞尔特数比率(通过在光滑通道中测量的值归一化的肋骨湍流器努塞尔特数)的增加通常在肋骨顶部增加。随着雷诺数的增加,在远离肋骨的平坦区域,特别是在肋骨下游的位置,努塞尔数比率降低。雷诺数从10,000增加到90,000时,全球平均努塞尔数比从3.36到2.82不等。当雷诺数在此范围内增加时,热性能参数也会有所降低,其值与方形通道中其他研究人员测得的60°连续肋骨数据近似一致或略高于60°。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号