首页> 外文会议>Shock Compression of Condensed Matter―2001 >A MECHANISTIC STUDY OF DELAYED DETONATION IN IMPACT DAMAGED SOLID ROCKET PROPELLANT
【24h】

A MECHANISTIC STUDY OF DELAYED DETONATION IN IMPACT DAMAGED SOLID ROCKET PROPELLANT

机译:冲击损伤固体火箭推进剂延迟爆轰的力学研究

获取原文

摘要

One method of hazard assessment for mass detonable solid rocket propellants consists of impacting right circular cylinders of propellant end-on into thick steel witness plates at varying impact velocities. A detonation that occurs within one shock traversal of the cylinder length is termed a prompt detonation or a shock-to-detonation transition (SDT). At lower velocities, some propellants detonate at times later than one shock transit, typically 1-5 shock transits. Because no mechanism for delayed detonation has been fully confirmed and accepted by the detonation physics community, these low-velocity detonations are referred to as unknown-to-detonation transitions (XDTs). A leading theory, however, is that prior to detonation mechanically induced damage sensitizes the material through the formation of internal porosity which provides new mechanical reaction initiation sites (hot spots) and enhanced internal burn surface. To study this phenomenology, we have developed the Coupled Damage and Reaction (CDAR) model, implemented it in the CTH shock physics code, and simulated propellant impact experiments. The CDAR model fully couples viscoelastic-viscoplastic deformation, tensile damage, porosity evolution, reaction initiation, and grain burning to model the increased reactivity of the propellant. In this paper, CDAR simulations of propellant damage in spall and Taylor impact tests are presented and compared to experiment. An XDT experiment is also simulated, and implications regarding damage mechanisms and hydrodynamic processes leading to XDT are discussed.
机译:大规模爆炸性固体火箭推进剂危险性评估的一种方法是,以不同的撞击速度将推进剂的右圆柱端部撞击到厚钢板的见证板上。在汽缸长度的一次冲击过程中发生的爆震称为快速爆震或从冲击到爆震的过渡(SDT)。在较低的速度下,一些推进剂的发爆时间有时比一次冲击波更晚,通常为1-5次冲击波。由于起爆物理学界尚未完全确认并接受延迟起爆的机制,因此这些低速起爆被称为未知爆轰过渡(XDT)。但是,一个主要理论是,在引爆之前,机械诱导的损伤通过内部孔隙的形成使材料敏感,内部孔隙提供了新的机械反应引发部位(热点)并增强了内部燃烧表面。为了研究这种现象,我们开发了耦合损伤与反应(CDAR)模型,并在CTH冲击物理代码中实现了该模型,并模拟了推进剂撞击实验。 CDAR模型将粘弹-粘塑性变形,拉伸损伤,孔隙演化,反应引发和颗粒燃烧完全耦合在一起,以模拟推进剂反应性的提高。在本文中,提出了在剥落和泰勒冲击试验中推进剂损坏的CDAR模拟,并将其与实验进行了比较。还模拟了XDT实验,并讨论了导致XDT的破坏机理和流体动力学过程的含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号