首页> 外文会议>Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS '98. 1998 IEEE International >Looking inside the ocean skin: differential absorption techniques to sense the interface temperature gradient
【24h】

Looking inside the ocean skin: differential absorption techniques to sense the interface temperature gradient

机译:观察海洋表层内部:差分吸收技术可感应界面温度梯度

获取原文
获取外文期刊封面目录资料

摘要

The crucial role the air/sea interface plays in heat and gas transfers and satellite sea surface temperatures is well known. A full understanding of interface effects is delayed by the difficulties of making measurements inside this thin (/spl sim/1.0 mm) and erratically moving zone. Atmospheric sounding interferometers have been developed which use the frequency variations in atmospheric absorption to retrieve the temperature profiles (Smith et al., 1983). Using a similar strategy, such instruments have "sounded" the interface temperature gradient. Frequency variations of water's absorptive properties have been used to measure the temperature gradient inside the interface (McKeown, 1995). The measurement extends less than 1.0 mm into the water; however, it is precisely this zone that is the most relevant to heat and gas transfers and the most difficult to sample. This technique also avoids the problems of thinness and erratic motion that plague mechanical measurements. The water molecule has quantum resonance features which cause the optical properties to vary with frequency. For example, the absorption coefficient drops 7 orders of magnitude from infrared to optical frequencies. A useful parameter is the inverse of the absorption coefficient, called the effective optical depth or EOD. EOD quantifies the range of depths in which a frequency's radiation originates. Since the radiant flux ofa 300 K ocean is weak at 2.2 /spl mu/m, the 3.8 /spl mu/m region is the most practical for existing instruments. To explore the technique, the radiance spectrum emitted from a small well known water body was measured in a laboratory setting. Temperature change over time measured by thermistors allowed calculation of the interface heat flow and the gradient required by that flow (required gradient) to be known. Since gradient measurement is the goal, the brightness temperature spectra were plotted at a frequency's EOD rather than the frequency itself. This plot, called a "spectral gradient", facilitates comparison of two gradients.
机译:空气/海洋界面在热量和气体传递以及卫星海面温度中起着至关重要的作用。由于难以在较薄的(/ spl sim / 1.0 mm)且不稳定的运动区域内进行测量,因此延迟了对界面效应的全面了解。已经开发出了大气探测干涉仪,它利用大气吸收中的频率变化来获取温度曲线(Smith等,1983)。使用类似的策略,这样的仪器已经“听起来”了界面温度梯度。水的吸收特性的频率变化已被用于测量界面内部的温度梯度(McKeown,1995)。测量范围延伸到水中不到1.0毫米;但是,正是这个区域与热和气体的传递最相关,也是最难采样的区域。该技术还避免了困扰机械测量的薄型和不稳定运动的问题。水分子具有量子共振特征,其导致光学性质随频率变化。例如,吸收系数从红外频率降低到光频率下降了7个数量级。一个有用的参数是吸收系数的倒数,称为有效光学深度或EOD。 EOD可以量化产生频率辐射的深度范围。由于300 K海洋的辐射通量很弱,为2.2 / spl mu / m,因此3.8 / spl mu / m的区域对于现有仪器而言是最实用的。为了探索该技术,在实验室环境中测量了一个众所周知的小型水体发出的辐射光谱。由热敏电阻测量的温度随时间的变化允许计算界面热流,并知道该流所需的梯度(所需梯度)。由于梯度测量是目标,因此亮度温度频谱是以频率的EOD而非频率本身绘制的。该图称为“光谱梯度”,有助于比较两个梯度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号