首页> 外文会议>Current Developments in Optical Design and Engineering VI >High-reflective multilayer coating by using the reflective control wavelength monitoring of layer thicknesses for second harmonic generation (SHG) laser
【24h】

High-reflective multilayer coating by using the reflective control wavelength monitoring of layer thicknesses for second harmonic generation (SHG) laser

机译:通过使用反射控制波长监控层厚度来反射高次谐波多层涂层,以产生二次谐波(SHG)激光

获取原文

摘要

Abstract: The aim of present work is the development of a method of high reflective (H/R) optical multilayer coating on KTP and BK-7 Glass with the specification: R (reflectance): greater than or equal to 99.9% at 1064 nm. T (transmittance): greater than or equal to 95% at 532 nm and T (transmittance): greater than or equal to 95% at 809 nm for a second harmonic generation (SHG) laser. The parameters that can be used to reach these goals are the number of layers in the multilayer, the layer thicknesses and refractive indices and extinction coefficients of the individual layers and of surrounding media. Clearly, the more demanding the performance specifications, the more complex is the resulting system. In our case, we have the most demanding performance specification, that is why the technology of obtaining coatings with this specification is very precise and complicated. In order to fulfill the demand of high reflectance at lambda equals 1064 nm it is necessary to deposit 30 or more alternative quarter wavelength thickness layers of ZrO$-2$/ and SiO$-2$/ and to fulfill the demand of high transmittance at lambda$-1$/ equals 532 nm and lambda$-2$/ equals 809 nm the SiO$-2$/ layer of lambda/8 (last layer) optical thickness is used to suppress the secondary maxima. The perfect suppression of secondary maxima takes place, when we deposit multilayer coating with equal optical thicknesses of high and low refractive indexes layers. The performance of many optical multilayers depends critically on the thicknesses of individual layers. The control of the layer thicknesses during their deposition is therefore very important. The most common techniques used is optical monitoring performing indirectly on a witness glass (or the chip). R (reflectance) optical monitoring is however used to measure the quantities of each layer optical thicknesses in our system. We used different control wavelength to monitor and control each layer optical thickness with different coating materials for compensating the deposited optical thickness. !4
机译:摘要:本工作的目的是开发一种在KTP和BK-7玻璃上的高反射(H / R)光学多层涂层的方法,其规格为:R(反射率):在1064 nm时大于或等于99.9% 。对于二次谐波(SHG)激光器,T(透射率):在532 nm处大于或等于95%,T(透射率):在809 nm处大于或等于95%。可以用来实现这些目标的参数是多层中的层数,各个层和周围介质的层厚度,折射率和消光系数。显然,对性能规格的要求越高,生成的系统越复杂。就我们而言,我们有最苛刻的性能规格,这就是为什么使用该规格获得涂层的技术非常精确和复杂。为了满足λ等于1064 nm的高反射率的要求,有必要沉积30个或更多的四分之一波长厚度的ZrO $ -2 $ /和SiO $ -2 $ /层,并满足高透射率的要求。 lambda $ -1 $ /等于532 nm,lambda $ -2 $ /等于809 nm。SiO $ -2 $ / lambda / 8(最后一层)光学厚度层用于抑制次要最大值。当我们沉积具有相同光学厚度的高折射率层和低折射率层的多层涂层时,可以完美地抑制次级最大值。许多光学多层膜的性能关键取决于各个层的厚度。因此,在沉积期间对层厚度的控制非常重要。最常用的技术是在监视玻璃(或芯片)上间接执行的光学监视。但是,R(反射)光学监视用于测量我们系统中每一层光学厚度的数量。我们使用不同的控制波长来监视和控制具有不同涂层材料的每一层光学厚度,以补偿沉积的光学厚度。 !4

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号