首页> 外文会议>AAS/AIAA space flight mechanics meeting >THE EQUATIONS OF RELATIVE MOTION IN THE ORBITAL REFERENCE FRAME
【24h】

THE EQUATIONS OF RELATIVE MOTION IN THE ORBITAL REFERENCE FRAME

机译:轨道参考系中的相对运动方程

获取原文

摘要

The analysis of relative motion of two spacecraft in Earth-bound orbits is usuallycarried out on the basis of simplifying assumptions. In particular, the referencespacecraft is assumed to follow a circular orbit, in which case the equationsof relative motion are governed by the well-known Hill-Clohessy-Wiltshire (HCW) equations. Circular motion is not, however, a solution whenthe Earth's flattening is accounted for, except for equatorial orbits, where inany case the acceleration term is not Newtonian. Several attempts have beenmade to account for the J_2 effects, either by ingeniously taking advantage oftheir differential effects, or by cleverly introducing ad-hoc terms in the equationsof motion on the basis of geometrical analysis of the J_2 perturbing effects.Analysis of relative motion about an unperturbed elliptical orbit is thenext step in complexity. Relative motion about a J_2-perturbed elliptic referencetrajectory is clearly a challenging problem, which has received little attention.All these problems are based on either the HCW equations for circular referencemotion, or the de Vries/Tschauner-Hempel equations for elliptical referencemotion, which are both approximate versions of the exact equations ofrelative motion. The main difference between the exact and approximate formsof these equations consists in the expression for the angular velocity and theangular acceleration of the rotating reference frame with respect to an inertialreference frame. The rotating reference frame is invariably taken as the localorbital frame, i.e., the RTN frame generated by the radial, the transverse, andthe normal directions along the primary spacecraft orbit. Some authors havetried to account for the non-constant nature of the angular velocity vector, buthave limited their correction to a mean motion value consistent with the J_2 perturbationterms. However, the angular velocity vector is also affected in direction,which causes precession of the node and the argument of perigee, i.e., ofthe entire orbital plane. Here we provide a derivation of the exact equations ofrelative motion by expressing the angular velocity of the RTN frame in termsof the state vector of the reference spacecraft. As such, these equations arecompletely general, in the sense that the orbit of the reference spacecraft needonly be known through itsephemeris, and therefore subject to any force field whatever. It is also shown thatthese equations reduce to either the Clohessy-Wiltshire, or the HCW equations,depending on the level of approximation. The explicit form of the equations ofrelative motion with respect to a J_2-perturbed reference orbit is also introduced.
机译:通常分析两个航天器在地球轨道上的相对运动 在简化假设的基础上进行的。特别是参考 假设航天器遵循圆形轨道,在这种情况下,方程 相对运动由著名的Hill-Clohessy- 威尔特郡(HCW)方程。但是,在以下情况下,圆周运动不是解决方案: 除赤道轨道外,地球的扁平化是考虑在内的, 在任何情况下,加速项都不是牛顿式的。已经进行了几次尝试 通过巧妙地利用 它们的微分效应,或通过在方程式中巧妙地引入临时术语 J_2扰动效应的几何分析的基础上确定运动。 分析关于一个无扰动的椭圆轨道的相对运动是 复杂性的下一步。关于J_2摄动椭圆参考的相对运动 轨迹显然是一个具有挑战性的问题,很少受到关注。 所有这些问题均基于用于循环参考的HCW方程 运动或椭圆参考的de Vries / Tschauner-Hempel方程 运动,它们都是的精确方程的近似形式 相对运动。精确形式和近似形式之间的主要区别 这些方程式包括角速度和 旋转参考系相对于惯性的角加速度 参考范围。旋转参考系始终被视为局部 轨道框架,即由径向,横向和垂直方向生成的RTN框架 沿主要航天器轨道的法线方向。一些作者有 试图解释角速度矢量的非恒定性质,但是 将其校正限制在与J_2扰动一致的平均运动值 条款。但是,角速度矢量也会在方向上受到影响, 这导致节点的进动和近地点的论点,即 整个轨道平面。在这里,我们提供了的精确方程的推导 通过表示RTN帧的角速度来表示相对运动 参考航天器的状态向量。因此,这些等式是 完全笼统,在某种意义上,参考航天器的轨道仅需通过其轨道即可知道 星历,因此受到任何力场的影响。还表明 这些方程式可以简化为Clohessy-Wiltshire或HCW方程式, 取决于近似水平。方程的显式形式 还介绍了相对于J_2扰动的参考轨道的相对运动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号