首页> 外文会议>International Conference on Computational Science >Patient-Specific Cardiac Parametrization from Eikonal Simulations
【24h】

Patient-Specific Cardiac Parametrization from Eikonal Simulations

机译:通过Eikonal Simulations进行患者特定的心脏参数化

获取原文

摘要

Simulations in cardiac electrophysiology use the bidomain equations to describe the electrical potential in the heart. If only the electrical activation sequence in the heart is needed, then the full bidomain equations can be substituted by the Eikonal equation which allows much faster responses w.r.t. the changed material parameters in the equation. We use our Eikonal solver optimized for memory usage and parallelization. Patient-specific simulations in cardiac electrophysiology require patient-specific conductivity parameters which are not accurately available in vivo. One chance to improve the given conductivity parameters consists in comparing the computed activation sequence on the heart surface with the measured ECG on the torso mapped onto this surface. By minimizing the squared distance between the measured solution and the Eikonal computed solution we are able to determine the material parameters more accurately. To reduce the number of optimization parameters in this process, we group the material parameters and introduce a specific scaling parameter γ_k for each group. The minimization takes place w.r.t. the scaling γ. We solve the minimization problem by the BFGS method and adaptive step size control. The required gradient ▽γf(γ) is computed either via finite differences or algorithmic differentiation using dco/c++ in tangent as well as in adjoint mode. We present convergence behavior as well as runtime and scaling results.
机译:心脏电生理学模拟使用双畴方程来描述心脏中的电势。如果只需要心脏中的电激活序列,则可以用Eikonal方程代替完整的双畴方程,从而可以更快地响应。等式中更改的材料参数。我们使用针对内存使用和并行化而优化的Eikonal求解器。心脏电生理学中特定于患者的模拟需要特定于患者的电导率参数,这些参数在体内无法准确获得。改善给定电导率参数的一种机会是将心脏表面上计算出的激活序列与映射到该表面上的躯干上测得的ECG进行比较。通过最小化被测溶液和Eikonal计算溶液之间的平方距离,我们能够更准确地确定材料参数。为了减少此过程中优化参数的数量,我们对材料参数进行分组,并为每组引入特定的缩放参数γ_k。最小化发生在缩放比例γ。我们通过BFGS方法和自适应步长控制解决最小化问题。所需的梯度▽γf(γ)可以通过切线以及伴随模式下的dco / c ++通过有限差分或算法微分来计算。我们介绍了收敛行为以及运行时和扩展结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号