首页> 外文会议>Conference on Computational Imaging >Blind deconvolution super-resolution photoacoustic microscope to achieve fine structural information of cerebral capillaries
【24h】

Blind deconvolution super-resolution photoacoustic microscope to achieve fine structural information of cerebral capillaries

机译:盲卷积超分辨率的光声显微镜,实现脑毛细血管的细结构信息

获取原文

摘要

Photoacoustic imaging is becoming a very promising tool for the research of living organisms. It combines the high contrast of optical imaging and the high resolution of acoustic imaging to realize the imaging of absorption clusters in biological tissues. Since the scattering of ultrasound signals in biological tissues is 2-3 orders of magnitude weaker than the scattering of light in biological tissues, the endogenous absorption difference of tissues is directly used in the imaging process, so photoacoustic imaging has the advantages of deep imaging depth and non-destructive. As an important branch of photoacoustic imaging, photoacoustic microscopy can provide micron-level or even sub-micron-level imaging resolution, which is of great significance for biological research such as blood vessel detection. Since the lateral resolution of the photoacoustic microscopy imaging system depends on the focus of the laser, a higher resolution can be obtained by increasing the numerical aperture of the condenser objective. However, a large numerical aperture usually means a shorter working distance and makes the entire imaging system very sensitive to small optical defects. Therefore, the improvement of resolution through this method will be limited in practical applications. This paper implements a method of using iterative deconvolution to obtain a high-resolution photoacoustic image of the brain. The focal spot of the photoacoustic microscopy is measured to obtain the lateral PSF (point spread function) of the system. Making the measured PSF as the initial system PSF to perform Lucy- Richardson (LR) deconvolution. The image resolution of cerebral vasculature obtained by this method is higher. The full width at half maximum (FWHM) of width of the same cerebral capillaries before and after deconvolution are 7 μm and 3.6 μm, respectively, and the image definition is increased by about 1.9 times. Experiments show that this method can further improve the clarity of photoacoustic images of cerebral capillaries, which lays the foundation for further research on brain imaging.
机译:光声成像正成为生物体研究的非常有前途的工具。它结合了光学成像的高对比度和声学成像的高分辨率,以实现生物组织中吸收簇的成像。由于生物组织中超声信号的散射比生物组织中的光散射较弱,因此组织的内源性吸收差异直接用于成像过程中,因此光声成像具有深度深度深度的优点和非破坏性的。作为光声成像的重要分支,光声显微镜可提供微米级甚至亚微米级成像分辨率,这对于血管检测等生物学研究具有重要意义。由于光声显微镜成像系统的横向分辨率取决于激光的焦点,因此可以通过增加冷凝器物镜的数值孔径来获得更高的分辨率。然而,大型数值孔径通常意味着更短的工作距离,并使整个成像系统对小型光学缺陷非常敏感。因此,通过该方法的分辨率的提高将受到实际应用的限制。本文实现了一种使用迭代解卷积的方法,获得大脑的高分辨率光声图像。测量光声显微镜的焦点以获得系统的横向PSF(点扩展功能)。使测量的PSF作为初始系统PSF,以执行Lucy-Richardson(LR)解卷积。通过该方法获得的脑脉管系统的图像分辨率更高。在去卷积之前和之后的相同脑毛细血管宽度的半最大(FWHM)的全宽度分别为7μm和3.6μm,图像定义增加约1.9倍。实验表明,该方法可以进一步提高脑毛细血管光声图像的清晰度,为进一步研究脑成像进行了进一步研究的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号