首页> 外文会议>Semiconductor Thermal Measurement, Modeling and Management Symposium >Molecular Dynamic Simulation of Evaporative Heat Transfer on Graphene Coated Silicon Substrate for Electronics Cooling
【24h】

Molecular Dynamic Simulation of Evaporative Heat Transfer on Graphene Coated Silicon Substrate for Electronics Cooling

机译:电子冷却的石墨烯涂层硅基片上蒸发传热的分子动力学模拟

获取原文

摘要

Traditional heat dissipation methods based on single phase air or liquid cooling are reaching their limits for keeping the functional unit at a sufficiently low temperature with an ultra-high heat flux $( gt 1mathrm {k}mathrm {W}/mathrm {c}mathrm {m}^{2})^{1-2}$. Twophase cooling such as thin film evaporation, owing to the large amount of latent heat in the phase change process, can effectively remove large amounts of heat while maintaining a small temperature difference across the heat transport system. As the evaporating liquid becomes sufficient thin, the surface characteristics such as interfacial thermal resistance become important parameters affecting the heat and mass transport during thin-film evaporation. This resistance is induced by the acoustic mismatch between the solid and liquid molecules, which impedes for heat propagating across the interface 3–4. Besides, based on the fundamental theory behind interfacial thermal resistance, the heat exchange across the solid-liquid interface is a strong function of the affinity between the two phases, i.e., the surface wettability. In general, it is expected that interfacial thermal resistance is positively related to the contact angle of the working fluid on the solid substrate. However, it remains unclear if the surface wettability has a direct impact on evaporative transport behavior from a thin liquid film. More importantly, we still lack a general description of the change in interfacial resistance with surface wettability and how such resistance can affect the thin-film evaporative transport. Understanding the relationship between interfacial thermal resistance, surface wettability, and evaporation behavior is important for evaluating the evaporative transport rate on different surfaces and designing rational nanocoatings to enhance evaporative heat transfer.
机译:基于单相空气或液体冷却的传统散热方法正达到其极限,以超高热通量将功能单元保持在足够低的温度$(\ gt 1 \ mathrm {k} \ mathrm {W} / \ mathrm {c} \ mathrm {m} ^ {2})^ {1-2} $。由于相变过程中存在大量潜热,因此薄膜蒸发等两相冷却可有效去除大量热量,同时在整个热传输系统中保持较小的温差。随着蒸发液体变得足够稀薄,诸如界面热阻之类的表面特性成为影响薄膜蒸发期间的热量和质量传递的重要参数。这种阻力是由固体和液体分子之间的声学​​失配引起的,这会阻止热量在界面3-4上传播。此外,基于界面热阻背后的基本理论,跨固液界面的热交换是两相之间的亲和力即表面润湿性的强函数。通常,期望界面热阻与工作流体在固体基质上的接触角成正相关。然而,尚不清楚表面润湿性是否直接影响薄液膜的蒸发传输行为。更重要的是,我们仍然缺乏对界面电阻随表面润湿性的变化以及这种电阻如何影响薄膜蒸发传输的一般描述。理解界面热阻,表面润湿性和蒸发行为之间的关系对于评估不同表面上的蒸发传输速率和设计合理的纳米涂层以增强蒸发传热非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号