首页> 外文会议>Semiconductor Thermal Measurement, Modeling and Management Symposium >Relative Performance of Two-Phase vs Solid Conductive Heat Spreaders for High Heat Flux Applications
【24h】

Relative Performance of Two-Phase vs Solid Conductive Heat Spreaders for High Heat Flux Applications

机译:高热通量应用中两相vs固态导热散热器的相对性能

获取原文

摘要

State of the art integrated circuit devices operate at ultrahigh heat fluxes with local hotspots generating well above $1,000 W/cm^2$. Heat spreaders attach to devices and transform their heat fluxes to lower levels for rejection to heat sinks with given surface areas, heat transfer coefficients and boundary temperatures. Thermal engineers design heat spreaders to minimize device hotspots by optimizing material selection, geometry, and heat spreader type. Heat spreader types include solid conductive units as well as twophase solutions; i.e., wick-based heat pipes (or vapor chambers) and pressure-driven oscillating heat pipes (OHPs). Two-phase spreaders more evenly diffuse heat across the heat sink but also add superheat at the interface of their solid wall and working fluid (i.e., convection boundary). For two-phase spreaders, thinner walls lower the temperature rises through the wall but increase heat fluxes, superheats and thus temperature rises at the convection boundary. The goal of the following study is to establish the optimum wall thickness of a heat spreader that decreases the temperature rise from the device through the spreader to the convection boundary-or in the case of a solid conductor to the heat sink boundary. In this paper, exact conduction solutions for this optimization problem are presented for both rectangular and radial geometries. For corroboration, the results are compared to finite element solutions for several sample problems with excellent agreement. The utility of the solutions is that they can readily be used in a spreadsheet format for rapid thermal trades to identify the optimum heated wall thickness and provide the minimum device temperature.
机译:最先进的集成电路器件以超高热通量工作,局部热点产生的热量远高于$ 1,000 W / cm ^ 2 $。散热器附着在设备上,并将其热通量转换为较低的水平,以排除具有给定表面积,传热系数和边界温度的散热器。热工程师设计散热器,以通过优化材料选择,几何形状和散热器类型来最大程度地减少设备热点。散热器类型包括固态导电单元以及两相解决方案;即基于灯芯的热管(或蒸汽室)和压力驱动的振荡热管(OHP)。两相散布器将热量更均匀地散布在散热器上,但也会在其固体壁和工作流体的界面(即对流边界)处增加过热。对于两相散布器,较薄的壁降低了通过壁的温度升高,但增加了热通量,过热,因此对流边界处的温度升高。以下研究的目的是确定散热器的最佳壁厚,以减小从设备通过散热器到对流边界(或在固态导体到散热器边界的情况下)的温度升高。在本文中,针对矩形和径向几何形状,提出了针对此优化问题的精确传导解决方案。为了证实这一点,将结果与有限元解决方案进行了比较,比较了几个样本问题,且一致性极好。该解决方案的实用性在于它们可以轻松地以电子表格格式用于快速热交易,以识别最佳的加热壁厚并提供最低的器件温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号