首页> 外文会议>Conference on biochemical and molecular engineering >SCALING UP E. COLI FROM THE LAB TO INDUSTRIAL CONDITIONS: LESSONS LEARNED TO ENGINEER ROBUST PROCESSES AND PRODUCTION HOSTS
【24h】

SCALING UP E. COLI FROM THE LAB TO INDUSTRIAL CONDITIONS: LESSONS LEARNED TO ENGINEER ROBUST PROCESSES AND PRODUCTION HOSTS

机译:从实验室到工业环境的E. COLI升级:从工程师的鲁棒工艺和生产主机中学到的经验教训

获取原文

摘要

For commercialization, strain and bioprocess developments need to be successfully transferred from the lab to industrial scale. Often, this step crucially decides about economic feasibility and survival of the approach. Accordingly, profound understanding of impact factors that hamper the successful scale-up is key, either to create novel microbial production platforms with enhanced robustness or to improve bioreactor design targeting minimized impact on cellular performance. Using an experimental scale-up simulator consisting of a stirred tank reactor (STR) and a plug flow reactor (PFR) Escherichia coli was exposed to typical large-scale mixing conditions in continuous experiments. Installing mixing times of about 110 seconds and simulating fluctuating availability of carbon and nitrogen sources, short-term responses revealed the repeated on/off switching of about 600 genes (Loeffler et al.,Metab Eng 2016; Simen et al. Microbial Biotechnol 2017). Dynamics of gene expression and protein formation were modelled using an agent-based approach and simulating large-scale conditions (Niess et al. Frontiers Microbiol., 2017). ATP balancing of gene expression and protein formation showed that maintenance demands increased by -50%. Thereof, strategies for genome reduction were deduced. Large-scale simulation revealed the dominating role of the alarmone ppGpp which triggers the on/off-switching of the stringent response. Accordingly, a novel chassis was engineered such that intracellular ppGpp levels were no more affected thereby disconnecting the extracellular stimulus from the intracellular response, even under nitrogen or carbon limitation. Experimental studies outline the energetic advantages of stringent response deficient production hosts. Additionally, changes were implemented in central metabolism finally yielding E. coli HGT (high glucose throughput, Michalowski et al., Metab Eng 2017). The patent-filed strain offers about 10 fold risen glucose uptake rates (relative to maintenance demands under glucose limitation) under resting conditions which is beneficial for large-scale production processes.
机译:为了商业化,菌株和生物工艺的开发需要成功地从实验室转移到工业规模。通常,此步骤通常决定该方法的经济可行性和生存期。因此,对阻碍成功扩大规模的影响因素的深刻理解是关键,要么创建具有增强的耐用性的新型微生物生产平台,要么针对针对细胞性能的影响最小化的生物反应器设计进行改进。使用由搅拌釜反应器(STR)和活塞流反应器(PFR)组成的实验放大模拟器,在连续实验中将大肠杆菌暴露于典型的大规模混合条件下。安装约110秒的混合时间并模拟碳源和氮源的波动可用性,短期响应揭示了约600个基因的重复开/关切换(Loeffler等人,Metab Eng 2016; Simen等人Microbial Biotechnol 2017) 。使用基于代理的方法并模拟大规模条件来模拟基因表达和蛋白质形成的动力学(Niess et al.Frontiers Microbiol。,2017)。 ATP对基因表达和蛋白质形成的平衡表明,维持需求增加了-50%。由此,推导了减少基因组的策略。大规模仿真揭示了警报器ppGpp的主要作用,它触发了严格响应的开/关。因此,工程化了新的底盘,使得即使在氮或碳限制下,细胞内ppGpp水平也不再受到影响,从而使细胞外刺激与细胞内反应脱离。实验研究概述了缺乏响应的严格生产宿主的能量优势。此外,改变了中央代谢,最终产生了大肠杆菌HGT(高葡萄糖通量,Michalowski等人,Metab Eng 2017)。在休息条件下,申请专利的菌株提供的葡萄糖摄取率(相对于葡萄糖限制下的维持要求)提高了约10倍,这对于大规模生产过程是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号