首页> 外文会议>European workshop on modern developments and applications in microbean analysis >CHARACTERISATION OF Li-ION BATTERIES BY COMBINED LM, CT, EDS, WDS AND SIMS USING HELIUM-ION MICROSCOPY (CARL ZEISS ORION)
【24h】

CHARACTERISATION OF Li-ION BATTERIES BY COMBINED LM, CT, EDS, WDS AND SIMS USING HELIUM-ION MICROSCOPY (CARL ZEISS ORION)

机译:使用氦离子显微镜(卡尔·蔡司猎户座)通过组合的LM,CT,EDS,WDS和SIM表征锂离子电池

获取原文

摘要

Today's battery technology is the bottleneck for advancements in a variety of applications ranging from consumer electronics to electronic vehicles. For Li-ion batteries the lifetime and safety are crucial concerns for their application. Depending on the cell chemistry, design and operation conditions several degradation processes can occur, which affect their performance and durability. The characterisation of structural and chemical properties of batteries from the macro- to the nanoscale with combined light microscopy (LM), computer tomography (CT), scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS) enable new insights for battery fabrication and enlightens battery aging mechanisms. The main studies on degradation effects were performed on commercial graphite/NMC (Li [Co_(1/3)Ni_(1/3)Mn_(1/3)] O_2) pouch cells treated in different scenarios and conditions. Increasing thickness of the whole cells due to storage and cycling processes are correlated to Li plating and the growth of the secondary electron image (SEI) layer can be detected. Morphology changes, formation of particle coatings on the cathode side (passivation of the active surface), a reaction rim on the anode side and the reduction of porosity of the separator are visualised [1]. The chemical analyses were performed by SEM with energy- (WDS) and wavelength-dispersive (WDS) X-ray spectrometry and additionally with the ORION NanoFab, a 3-in-l multibeam ion microscope for sub-10 nm nanostructuring, with an attached SIMS. This enables increasing resolution of the analytic studies and the spatial detection of Li. Figure 1 presents the investigation of the separator foils anode side. Figure 1a shows a top view image recorded with the SIGMA 300 VP SEM. Different precipitations formed by degeneration are marked as 1, 1b, 2 and 3. The EDS was performed with 5 kV accelerating voltage to improve the spatial resolution and decrease information depth. By phase mapping (Fig. lb) differences in the chemical composition are obtained, where the round precipitations (green and yellow) yield an enrichment in the Si and F content (Fig. 1c). The differences between 1 and lb are due to matrix effects, since the lateral information depth of the X-rays in the centre of particle 1b is beyond the particle size. The elongated precipitations (blue) show an enrichment in Cu and P and the original separator foil appears as the red phase (Fig. 1c). The ORION NanoFab equipped with a SIMS enables mapping of the lithium content with a high spatial resolution. All the newly created features on top of the separator foil showed an enrichment in the lithium content (Figs. 1d and 1e).
机译:当今的电池技术是从消费类电子产品到电子汽车的各种应用中取得进步的瓶颈。对于锂离子电池,使用寿命和安全性是其应用的关键问题。根据电池的化学性质,设计和操作条件,可能发生几种降解过程,这些降解过程会影响其性能和耐用性。结合光学显微镜(LM),计算机断层扫描(CT),扫描电子显微镜(SEM)和二次离子质谱(SIMS)对从宏观到纳米级的电池结构和化学性质进行表征,可为电池制造提供新的见解并启发电池老化机制。对降解效果的主要研究是在不同场景和条件下处理的商用石墨/ NMC(Li [Co_(1/3)Ni_(1/3)Mn_(1/3)O_2)袋式电池上进行的。由于存储和循环过程导致的整个电池厚度的增加与Li镀层相关,并且可以检测到二次电子图像(SEI)层的生长。可以观察到形态学变化,在阴极侧形成颗粒涂层(活性表面钝化),在阳极侧形成反应边缘以及减少隔板的孔隙率[1]。化学分析是通过SEM用能量(WDS)和波长色散(WDS)X射线光谱仪进行的,另外还使用ORION NanoFab,这是一种用于10纳米以下纳米结构的3-in-l多光束离子显微镜,带有附件模拟人生。这样可以提高解析研究的分辨率和对Li的空间检测。图1显示了隔板箔阳极侧的研究。图1a显示了用SIGMA 300 VP SEM记录的顶视图图像。由变性形成的不同沉淀分别标记为1、1b,2和3。用5 kV加速电压进行EDS以提高空间分辨率并减小信息深度。通过相图绘制(图1b),获得了化学成分的差异,其中圆形沉淀(绿色和黄色)产生了Si和F含量的富集(图1c)。 1和1b之间的差异是由于基体效应引起的,因为X射线在粒子1b中心的横向信息深度超出了粒子大小。延长的沉淀物(蓝色)显示出铜和磷的富集,原始的分隔膜呈红色相出现(图1c)。配备SIMS的ORION NanoFab能够以高空间分辨率映射锂含量。隔板箔片上所有新创建的特征都显示出锂含量的增加(图1d和1e)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号